已知⊙O的方程為
x=2
2
cosθ
y=2
2
sinθ
(θ為參數(shù)),求⊙O上的點(diǎn)到直線
x=1+t
y=1-t
(t為參數(shù))的距離的最大值.
將圓轉(zhuǎn)化為普通方程為x2+y2=8,所以圓心為(0,0),半徑r=2
2

將直線轉(zhuǎn)化為普通方程為x+y-2=0,
則圓心到直線的距離d=
|-2|
12+12
=
2
2
=
2
,
所以⊙O上的點(diǎn)到直線的距離的最大值為d+r=3
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O的方程為
x=2
2
cosθ
y=2
2
sinθ
(θ為參數(shù)),則⊙O上的點(diǎn)到直線
x=1+t
y=1-t
(t為參數(shù))的距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O的方程為
x=2
2
cosθ
y=2
2
sinθ
(θ為參數(shù)),求⊙O上的點(diǎn)到直線
x=1+t
y=1-t
(t為參數(shù))的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•佛山二模)(坐標(biāo)系與參數(shù)方程)已知⊙O的方程為
x=2
2
cosθ
y=2
2
sinθ
(θ為參數(shù)),則⊙O上的點(diǎn)到直線
x=1+t
y=1-t
(t為參數(shù))的距離的最大值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O的方程為
x=2
2
cosθ
y=2
2
sinθ
(θ為參數(shù)),則⊙O上的點(diǎn)到直線
x=1+t
y=1-t
(t為參數(shù))的距離的最大值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案