已知正數(shù)a,b,c滿足a+b=ab,a+b+c=abc,則c的取值范圍是   
【答案】分析:由正數(shù)a,b,c滿足a+b=ab,利用基本不等式即可得出ab≥4.由a+b+c=abc,變形為即可得出.
解答:解:∵正數(shù)a,b,c滿足a+b=ab,∴,化為,
,∴ab≥4,當且僅當a=b=2時取等號,∴ab∈[4,+∞).
∵a+b+c=abc,∴ab+c=abc,∴c==
∵ab≥4,∴,∴
∴c的取值范圍是
故答案為
點評:恰當變形利用基本不等式的性質(zhì)和不等式的基本性質(zhì)是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
α
=(
3
sinωx,cosωx),
β
=(cosωx,cosωx)
,記函數(shù)f(x)=
α
β
,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:湖南省月考題 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinAsinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省邵陽市洞口四中高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江西省宜春市宜豐中學高二第九次模擬數(shù)學試卷(理科)(解析版) 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量, ,記函數(shù)已知的周期為π.

(1)求正數(shù)之值;

(2)當x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin,試求f(x)的值域.

查看答案和解析>>

同步練習冊答案