9.二次函數(shù)f(x)=x2-2mx+3,在區(qū)間[-1,2]上不單調(diào),則實數(shù)m的取值范圍是( 。
A.(-1,2)B.[-1,+∞)C.(-∞,2]D.[-1,2]

分析 若二次函數(shù)f(x)=x2-2mx+3,在區(qū)間[-1,2]上不單調(diào),則函數(shù)圖象的對稱軸在(-1,2)上,進而得到答案.

解答 解:函數(shù)f(x)=x2-2mx+3的圖象是開口朝上,且以直線x=m為對稱軸的拋物線,
若在區(qū)間[-1,2]上不單調(diào),
則m∈(-1,2),
故選:A

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)f(x)是定義在R上的函數(shù),其導函數(shù)為f′(x),若f(x)-f′(x)<1,f(0)=2016,則不等式f(x)>2015ex+1的解集為( 。
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(2015,+∞)D.(-∞,0)∪(2015,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.方程2x2+5x-3=0的解集為{-3,$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$定義域為(-∞,2);值域為(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知O為△ABC的外心,AB=3,AC=4,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且2x+y=1(x,y≠0),則cos∠BAC=( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,設(shè)其左右焦點為F1,F(xiàn)2,過F2的直線l交橢圓于A,B兩點,三角形F1AB的周長為8.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)O為坐標原點,若OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.定義區(qū)間I=(α,β)的長度為β-α,已知函數(shù)f(x)=ax2+(a2+1)x,其中a<0,區(qū)間I={x|f(x)>0}.
(Ⅰ)求區(qū)間I的長度;
(Ⅱ)設(shè)區(qū)間I的長度函數(shù)為g(a),試判斷函數(shù)g(a)在(-∞,-1]上的單調(diào)性;
(Ⅲ)在上述函數(shù)g(a)中,若a∈(-∞,-1],問:是否存在實數(shù)k,使得g(k-sinx-3)≤g(k2-sin2x-4)對一切x∈R恒成立,若存在,求出k的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點.則二面角B-DE-C的平面角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.拋物線y2=12x上與焦點的距離等于9的點的坐標是( 。
A.$(6,6\sqrt{2})$或$(6,-6\sqrt{2})$B.$(4,4\sqrt{3})$或$(4,-4\sqrt{3})$C.(3,6)或(3,-6)D.$(9,6\sqrt{3})$或$(9,-6\sqrt{3})$

查看答案和解析>>

同步練習冊答案