在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知拋物線C的極坐標(biāo)方程為ρcos2θ=4sin θ(ρ≥0),直線l的參數(shù)方程為(t為參數(shù)),設(shè)直線l與拋物線C的兩交點(diǎn)為A,B,點(diǎn)F為拋物線C的焦點(diǎn),則|AF|+|BF|=__________.

試題分析:拋物線的極坐標(biāo)方程為,即,焦點(diǎn),標(biāo)準(zhǔn)方程,直線的參數(shù)方程為,即,
把直線方程代入拋物線的方程可得,所以,
由拋物線的定義可得|AF|+|BF|=.
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,把參數(shù)方程化為普通方程的方法,拋物線的定義以及標(biāo)準(zhǔn)方程的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,直線的方程為,則點(diǎn)到直線的距離為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


在直角坐標(biāo)系內(nèi),直線的參數(shù)方程為為參數(shù).以為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.判斷直線和圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)A的極坐標(biāo)化成直角坐標(biāo)為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸)中,圓的極坐方程為,則的位置關(guān)系是______(在“相交、相離、內(nèi)切、外切、內(nèi)含”中選擇一個(gè)你認(rèn)為正確的填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1) 在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線.已知在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
(2) 某旅游景點(diǎn)給游人準(zhǔn)備了這樣一個(gè)游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個(gè)形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個(gè)鐵釘之間有1個(gè)空隙,第2行3個(gè)鐵釘之間有2個(gè)空隙,…,第8行9個(gè)鐵釘之間有8個(gè)空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號(hào)球槽,分別獎(jiǎng)4元、2元、0元、-2元.(一個(gè)玻璃球的滾動(dòng)方式:通過第1行的空隙向下滾動(dòng),小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動(dòng),落入第8行的某一個(gè)空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個(gè)小時(shí),留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識(shí)分析,這一小時(shí)內(nèi)游戲莊家是贏是賠? 通過計(jì)算,你得到什么啟示?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系下,設(shè)圓C:,試求:
(1)圓心的直角坐標(biāo)表示
(2)在直角坐標(biāo)系中,設(shè)曲線C經(jīng)過變換得到曲線,則曲線的軌跡是什么圖形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為,曲線C1,C2相交于A,B兩點(diǎn)
(I)把曲線C1,C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(II)求弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,以(1,1)為圓心,為半徑的圓在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以ox為極軸的極坐標(biāo)系中對(duì)應(yīng)的極坐標(biāo)方程為(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案