精英家教網 > 高中數學 > 題目詳情

如圖,傾斜角為a的直線經過拋物線y2=8x的焦點F,且與拋物線交于AB兩點.

(Ⅰ)求拋物線的焦點F的坐標及準線l的方程;

(Ⅱ)若a為銳角,作線段AB的垂直平分線mx軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.

答案:
解析:

  (Ⅰ)解:設拋物線的標準方程為,則,從而

  因此焦點的坐標為(2,0).

  又準線方程的一般式為

  從而所求準線l的方程為

  (Ⅱ)解法一:如圖(21)圖作ACl,BDl,垂足為C、D,則由拋物線的定義知|FA|=|FC|,|FB|=|BD|.

  記A、B的橫坐標分別為xxxz,則

  |FA|=|AC|=解得,

  類似地有,解得

  記直線mAB的交點為E,則

所以

  故

  解法二:設,,直線AB的斜率為,則直線方程為

  將此式代入,得,故

  記直線mAB的交點為,則

  

  ,

  故直線m的方程為

  令y=0,得P的橫坐標

  

  從而為定值.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,傾斜角為a的直線經過拋物線y2=8x的焦點F,且于拋物線交于A、B兩點.
(Ⅰ)求拋物線的焦點F的坐標及準線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年廣東省深圳市高級中學高三(上)期中數學試卷(文科)(解析版) 題型:解答題

如圖,傾斜角為a的直線經過拋物線y2=8x的焦點F,且于拋物線交于A、B兩點.
(Ⅰ)求拋物線的焦點F的坐標及準線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源:2010年吉林省長春五中高考數學三模試卷(理科)(解析版) 題型:解答題

如圖,傾斜角為a的直線經過拋物線y2=8x的焦點F,且于拋物線交于A、B兩點.
(Ⅰ)求拋物線的焦點F的坐標及準線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源:2007年重慶市高考數學試卷(文科)(解析版) 題型:解答題

如圖,傾斜角為a的直線經過拋物線y2=8x的焦點F,且于拋物線交于A、B兩點.
(Ⅰ)求拋物線的焦點F的坐標及準線l的方程
(Ⅱ)若a為銳角,作線段AB的垂線平分m交x軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,傾斜角為a的直線經過拋物線的焦點F,且與拋物線交于A、B兩點。

(Ⅰ)求拋物線的焦點F的坐標及準線l的方程;

(Ⅱ)若a為銳角,作線段AB的垂直平分線mx軸于點P,證明|FP|-|FP|cos2a為定值,并求此定值。

查看答案和解析>>

同步練習冊答案