【題目】已知函數(shù).
(1)若有兩個(gè)零點(diǎn),求a的取值范圍;
(2)設(shè),,直線的斜率為k,若恒成立,求a的取值范圍.
【答案】(1)(2)
【解析】
(1)求導(dǎo)得,當(dāng)時(shí),可得在上是增函數(shù),不可能有兩個(gè)零點(diǎn), 當(dāng)時(shí),利用導(dǎo)數(shù)可以求得函數(shù)在定義域內(nèi)的最大值為,由,解得.然后根據(jù), 得到在上有1個(gè)零點(diǎn);根據(jù),,得到在上有1個(gè)零點(diǎn),可得的取值范圍.
(2)利用斜率公式將恒成立,轉(zhuǎn)化為,即在上是增函數(shù),再求導(dǎo)后,分離變量變成,最后用基本不等式求得最小值,代入即得.
(1),,
①當(dāng)時(shí),,在上是增函數(shù),不可能有兩個(gè)零點(diǎn);
②當(dāng)時(shí),在區(qū)間上,;在區(qū)間上,.
∴在是增函數(shù),在是減函數(shù),,解得,此時(shí),且,∴在上有1個(gè)零點(diǎn);
,
令,則,∴在上單調(diào)遞增,
∴,即,∴在上有1個(gè)零點(diǎn).
∴a的取值范圍是.
(2)由題意得,
∴,
∴在上是增函數(shù),
∴在上恒成立,∴,
∵,∴,當(dāng)且僅當(dāng)時(shí),即取等號(hào),∴.
∴a的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的(為自然對(duì)數(shù)的底數(shù)),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸的正半軸,且過點(diǎn),過的直線交拋物線于,兩點(diǎn).
(1)求拋物線的方程;
(2)設(shè)直線是拋物線的準(zhǔn)線,求證:以為直徑的圓與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學(xué)小組為了解腸胃病與運(yùn)動(dòng)之間的聯(lián)系,調(diào)查了50位中老年人每周運(yùn)動(dòng)的總時(shí)長(zhǎng)(單位:小時(shí)),將數(shù)據(jù)分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進(jìn)行統(tǒng)計(jì),并繪制出如圖所示的柱形圖.
圖中縱軸的數(shù)字表示對(duì)應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運(yùn)動(dòng)的總時(shí)長(zhǎng)少于14小時(shí)為運(yùn)動(dòng)較少.
每周運(yùn)動(dòng)的總時(shí)長(zhǎng)不少于14小時(shí)為運(yùn)動(dòng)較多.
(1)根據(jù)題意,完成下面的2×2列聯(lián)表:
有腸胃病 | 無腸胃病 | 總計(jì) | |
運(yùn)動(dòng)較多 | |||
運(yùn)動(dòng)較少 | |||
總計(jì) |
(2)能否有99.9%的把握認(rèn)為中老年人是否有腸胃病與運(yùn)動(dòng)有關(guān)?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】撫州市某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登軍峰山健身的活動(dòng),有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.
(1)求和之間的參加者人數(shù);
(2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機(jī)選取名擔(dān)任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.
(3)已知和之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.
(1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體AC1中,E,F分別為D1C1,B1C1的中點(diǎn),AC∩BD=P,A1C1∩EF=Q,如圖.
(1)若A1C交平面EFBD于點(diǎn)R,證明:P,Q,R三點(diǎn)共線.
(2)線段AC上是否存在點(diǎn)M,使得平面B1D1M∥平面EFBD,若存在確定M的位置,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)將由代入,化簡(jiǎn)即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.
試題解析:(Ⅰ)由及,得,即
所以曲線的極坐標(biāo)方程為
(II)將的參數(shù)方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范圍是.
【題型】解答題
【結(jié)束】
23
【題目】已知、、均為正實(shí)數(shù).
(Ⅰ)若,求證:
(Ⅱ)若,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com