【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學(xué)小組為了解腸胃病與運(yùn)動(dòng)之間的聯(lián)系,調(diào)查了50位中老年人每周運(yùn)動(dòng)的總時(shí)長(zhǎng)(單位:小時(shí)),將數(shù)據(jù)分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進(jìn)行統(tǒng)計(jì),并繪制出如圖所示的柱形圖.
圖中縱軸的數(shù)字表示對(duì)應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運(yùn)動(dòng)的總時(shí)長(zhǎng)少于14小時(shí)為運(yùn)動(dòng)較少.
每周運(yùn)動(dòng)的總時(shí)長(zhǎng)不少于14小時(shí)為運(yùn)動(dòng)較多.
(1)根據(jù)題意,完成下面的2×2列聯(lián)表:
有腸胃病 | 無(wú)腸胃病 | 總計(jì) | |
運(yùn)動(dòng)較多 | |||
運(yùn)動(dòng)較少 | |||
總計(jì) |
(2)能否有99.9%的把握認(rèn)為中老年人是否有腸胃病與運(yùn)動(dòng)有關(guān)?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【答案】(1)列聯(lián)表見(jiàn)解析; (2) 有99.9%的把握認(rèn)為中老年人是否有腸胃病與運(yùn)動(dòng)有關(guān)
【解析】
(1)由柱形圖計(jì)算得出對(duì)應(yīng)數(shù)據(jù),再填寫列聯(lián)表;(2)根據(jù)表中數(shù)據(jù)計(jì)算K2,對(duì)照數(shù)表得出結(jié)論.
(1)由柱形圖可知,有腸胃病的老年人中運(yùn)動(dòng)較少的人數(shù)為12+10+8=30,
運(yùn)動(dòng)較多的人數(shù)為2+1+1=4;
無(wú)腸胃病的老年人中運(yùn)動(dòng)較少的人數(shù)為3+2+1=6,
運(yùn)動(dòng)較多的人數(shù)為2+4+4=10.
故2×2列聯(lián)表如下:
有腸胃病 | 無(wú)腸胃病 | 總計(jì) | |
運(yùn)動(dòng)較多 | 4 | 10 | 14 |
運(yùn)動(dòng)較少 | 30 | 6 | 36 |
總計(jì) | 34 | 16 | 50 |
(2).
故有99.9%的把握認(rèn)為中老年人是否有腸胃病與運(yùn)動(dòng)有關(guān)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解我市特色學(xué)校的發(fā)展?fàn)顩r,某調(diào)查機(jī)構(gòu)得到如下統(tǒng)計(jì)數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
特色學(xué)校(百個(gè)) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(Ⅰ)根據(jù)上表數(shù)據(jù),計(jì)算與的相關(guān)系數(shù),并說(shuō)明與的線性相關(guān)性強(qiáng)弱(已知:,則認(rèn)為與線性相關(guān)性很強(qiáng);,則認(rèn)為與線性相關(guān)性一般;,則認(rèn)為與線性相關(guān)性較弱);
(Ⅱ)求關(guān)于的線性回歸方程,并預(yù)測(cè)我市2019年特色學(xué)校的個(gè)數(shù)(精確到個(gè)).
參考公式: ,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與斜率為且過(guò)拋物線焦點(diǎn)的直線交于、兩點(diǎn),滿足弦長(zhǎng).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)已知為拋物線上任意一點(diǎn),為拋物線內(nèi)一點(diǎn),求的最小值,以及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的單調(diào)減區(qū)間為.
(1)求、的值及極值;
(2)若對(duì),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過(guò)點(diǎn)P(1,2),傾斜角α= .
(1)寫出圓C的普通方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將,,,,這5名同學(xué)從左至右排成一排,則與相鄰且與之間恰好有1名同學(xué)的排法有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若有兩個(gè)零點(diǎn),求a的取值范圍;
(2)設(shè),,直線的斜率為k,若恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個(gè)粽子,其中豆沙粽個(gè),肉粽個(gè),白粽個(gè),這三種粽子的外觀完全相同,從中任意選取個(gè).
()求三種粽子各取到個(gè)的概率.
()設(shè)表示取到的豆沙粽個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(Ⅰ)當(dāng),時(shí),求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng),時(shí),若方程有兩個(gè)不同的實(shí)數(shù)解,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com