已知函數(shù)f(x)=
1
3
x3+
1
2
ax2
+2bx+c在R上可導.
(1)若f(x)在區(qū)間[-1,2]上為減函數(shù),且b=3a,求a的取值范圍;
(2)若f(x)的極大值點在(0,1)內,極小值點在(1,2)內,求
b-2
a-1
的取值范圍.
(1)∵當a≠0時,f′(x)=x2+ax+2b=x2+ax+6a,又f(x)在[-1,2]上為減函數(shù),
∴f′(x)≤0對x∈[-1,2]恒成立,…(2分)
即x2+ax+6a≤0對x∈[-1,2]恒成立,
∴f′(-1)≤0且f′(2)≤0,…(4分)
1-a+6a≤0
4+2a+6a≤0
a≤-
1
5
a≤-
1
2
⇒a≤-
1
2
.…(6分)
(2)∵f(x)=
1
3
x3+
1
2
ax2+2bx+c,
∴f′(x)=x2+ax+2b,…(8分)
由題意得
f′(0)=2b>0
f′(1)=1+a+2b<0
f′(2)=4+2a+2b>0
畫出可行域:
于是
b-2
a-1
即為點P(1,2)與可行域內(不包含邊界)任意一點的連線的斜率.
∴kPC
b-2
a-1
<kPA,即
1
4
b-2
a-1
<1.…(13分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

中的最大值和最小值分別是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R,a>0)其中,f(0)=3,f′(x)是f(x)的導函數(shù).
(Ⅰ)若f′(-1)=f′(3)=-36,f′(5)=0,求函數(shù)f(x)的解析式;
(Ⅱ)若c=-6,函數(shù)f(x)的兩個極值點為x1,x2滿足-1<x1<1<x2<2.設λ=a2+b2-6a+2b+10,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設曲線f(x)=ax2+4,若x=1處切線斜率為2,則a的值為(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)f(x)=x3-6bx+3b在(0,1)內只有極小值,則實數(shù)b的取值范圍是( 。
A.(0,1)B.(-∞,1)C.(0,+∞)D.(0,
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=x3+1在點(-1,0)處的切線方程為(  )
A.3x+y+3=0B.3x-y+3=0C.3x-y=0D.3x-y-3=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若f′(x0)=2,則
lim
k→0
f(x0-k)-f(x0)
2k
的值為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
lnx+k
ex
(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調區(qū)間;
(Ⅲ)設g(x)=(x2+x)f′(x),其中f′(x)是f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設曲線f(x)=
1
3
x3-
a
2
x2+1
(其中a>0)在點(x1,f(x1))及(x2,f(x2))處的切線都過點(0,2).證明:當x1≠x2時,f′(x1)≠f′(x2

查看答案和解析>>

同步練習冊答案