(本題滿分12分)橢圓的左、右焦點(diǎn)分別為,過的直線 與橢圓交于兩點(diǎn)。
(Ⅰ)若點(diǎn)在圓為橢圓的半焦距)上,且,求橢圓的離心率;
  (Ⅱ)若函數(shù)的圖象,無論為何值時(shí)恒過定點(diǎn),求的取值范圍。
解:(I)∵點(diǎn)在圓上,為一直角三角形

由橢圓的定義知: 
………………………………5分
(II)∵函數(shù) 的圖象恒過點(diǎn)
  點(diǎn), 
①若軸,則
 …………7分[
②若軸不垂直,設(shè)直線的斜率為,則的方程為
消去…………(*)
方程(*)有兩個(gè)不同的實(shí)根.
設(shè)點(diǎn),則是方程(*)的兩個(gè)根
 ………………9分
 

 
………………11分
由①②知 ………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分13分)
已知橢圓為其左、右焦點(diǎn),為橢圓上任一點(diǎn),的重心為,內(nèi)心,且有(其中為實(shí)數(shù))
(1)求橢圓的離心率
(2)過焦點(diǎn)的直線與橢圓相交于點(diǎn)、,若面積的最大值為3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
已知點(diǎn),過點(diǎn)作拋物線的切線,切點(diǎn)在第二象限,如圖.(Ⅰ)求切點(diǎn)的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓恰好經(jīng)過切點(diǎn),設(shè)切線交橢圓的另一點(diǎn)為,記切線的斜率分別為,若,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知,為橢圓的左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于,的動點(diǎn),且面積的最大值為
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)直線繞點(diǎn)轉(zhuǎn)動時(shí),試判斷以
為直徑的圓與直線的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)已知橢圓C:的左、右頂點(diǎn)的坐標(biāo)分別為,,離心率。
(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點(diǎn)分別為,,若直線與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線與橢圓C交于,兩點(diǎn),點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓經(jīng)過點(diǎn),離心率為,動點(diǎn)
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以O(shè)M為直徑且被直線截得的弦長為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明線段ON的長為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓和雙曲線有相同的焦點(diǎn)F1、F2,點(diǎn)P為橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1|·|PF2|的值是       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的短軸長為2,長軸是短軸的2倍,則橢圓的中心到其準(zhǔn)線的距離是         

查看答案和解析>>

同步練習(xí)冊答案