【題目】已知方程的曲線是圓C,
(1)若直線l:與圓C相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的值;
(2)當(dāng)時(shí),設(shè)T為直線n:上的動(dòng)點(diǎn),過(guò)T作圓C的兩條切線TG、TH,切點(diǎn)分別為G、H,求四邊形TGCH而積的最小值.
【答案】(1)
(2)2
【解析】
(1)設(shè),,則,進(jìn)一步得到,聯(lián)立直線方程與圓的方程,化為關(guān)于y的一元二次方程,利用韋達(dá)定理結(jié)合即可求得實(shí)數(shù)的值;
(2)當(dāng)時(shí),圓的方程為,求出圓心坐標(biāo)與半徑,由于為圓的兩條切線,可得.再求出點(diǎn)到直線的距離,即可求得答案.
(1)解:設(shè),,則,,
得,即.
因?yàn)?/span>,則得,所以 ①
聯(lián)立,得.
由得.
于是,. 代入①得.
解得,符合題意.
所以所求實(shí)數(shù)m的值等于.
(2)當(dāng)時(shí),圓C的方程為,
即,所以圓C的圓心坐標(biāo)是,半徑是1.
由于TG、TH為C的兩條切線,所以.
又,而的最小值為點(diǎn)C到直線n的距離d.
,
因此四邊形TGCH面積的最小值是2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五邊形中,四邊形為長(zhǎng)方形,為邊長(zhǎng)為的正三角形,將沿折起,使得點(diǎn)在平面上的射影恰好在上.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對(duì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C是拋物線W:y2=4x上的三個(gè)點(diǎn),D是x軸上一點(diǎn).
(1)當(dāng)點(diǎn)B是W的頂點(diǎn),且四邊形ABCD為正方形時(shí),求此正方形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形ABCD是否可能為正方形,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是等差數(shù)列,,且,,成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)求的前項(xiàng)和的最小值;
(3)若是等差數(shù)列,與的公差不相等,且,問(wèn):和中除第5項(xiàng)外,還有序號(hào)相同且數(shù)值相等的項(xiàng)嗎?(直接寫(xiě)出結(jié)論即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為20米,圓O的半徑為1米,圓心足正方形的中心,點(diǎn)P、Q分別在線段AD、CB上,若線段PQ與圓O有公共點(diǎn),則稱(chēng)點(diǎn)Q在點(diǎn)P的“盲區(qū)”中. 已知點(diǎn)P以1.5米/秒的速度從A出發(fā)向D移動(dòng),同時(shí),點(diǎn)Q以1米/秒的速度從C出發(fā)向B移動(dòng),則點(diǎn)P從A移動(dòng)到D的過(guò)程中,點(diǎn)Q在點(diǎn)P的育區(qū)中的時(shí)長(zhǎng)約為________秒(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形和矩形所在的平面互相垂直,,點(diǎn)在線段上.
(Ⅰ)若為的中點(diǎn),求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)證明:存在點(diǎn),使得平面,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓Γ:+=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,離心率為.
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)過(guò)P(1,0)作動(dòng)直線AB交橢圓Γ于A,B兩點(diǎn),Q(4,3)為平面上一定點(diǎn)連接QA,QB,設(shè)直線QA,QB的斜率分別為k1,k2,問(wèn)k1+k2是否為定值,如果是,則求出該定值;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中, , , 是的中點(diǎn),以為折痕將向上折起, 變?yōu)?/span>,且平面平面.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com