【題目】一箱方便面共有50袋,用隨機(jī)抽樣方法從中抽取了10袋,并稱其質(zhì)量(單位:g)結(jié)果為:60.5 61 60 60 61.5 59.5 59.5 58 60 60
(1)指出總體、個(gè)體、樣本、樣本容量;
(2)指出樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(3)求樣本數(shù)據(jù)的方差.
【答案】(1) 見(jiàn)解析.(2)60.(3)0.8.
【解析】試題分析:(1)利用總體、個(gè)體、樣本、樣本容量的定義求解. (2)利用樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)的定義及公式求解. (3)利用樣本數(shù)據(jù)方差的計(jì)算公式求解.
試題解析:(1)總體是這50袋方便面的質(zhì)量,個(gè)體是這一箱方便面中每一袋方便面的質(zhì)量,樣本是抽取的10袋方便面的質(zhì)量,樣本容量為10.
(2)這組樣本數(shù)據(jù)的眾數(shù)是60,中位數(shù)為60,
平均數(shù)為×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.
(3)樣本數(shù)據(jù)的方差為s2=[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0 , 則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=2x+ ﹣5,求此函數(shù)的不動(dòng)點(diǎn);
(2)若二次函數(shù)f(x)=ax2﹣x+3在x∈(1,+∞)上有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求函數(shù)y=的值的程序框圖如圖所示.
(1)指出程序框圖中的錯(cuò)誤,并寫(xiě)出算法;
(2)重新繪制解決該問(wèn)題的程序框圖,并回答下面提出的問(wèn)題.
①要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?
②要使輸出的值為8,輸入的x值應(yīng)是多少?
③要使輸出的y值最小,輸入的x值應(yīng)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(單位:萬(wàn)元)有如下的統(tǒng)計(jì)資料:
使用年限x/年 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y/萬(wàn)元 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知y對(duì)x呈線性相關(guān)關(guān)系.試求:
(1)回歸方程x+的系數(shù).
(2)使用年限為10年時(shí),試估計(jì)維修費(fèi)用是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義“三角戀寫(xiě)法”為“三個(gè)人之間寫(xiě)信,每人給另外兩人之一寫(xiě)一封信,且任意兩個(gè)人不會(huì)彼此給對(duì)方寫(xiě)信”,若五個(gè)人a,b,c,d,e中的每個(gè)人都恰給其余四人中的某一個(gè)人寫(xiě)了一封信,則不出現(xiàn)“三角戀寫(xiě)法”寫(xiě)法的寫(xiě)信情況的種數(shù)為( )
A.704
B.864
C.1004
D.1014
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)舉行一次知識(shí)競(jìng)賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段、現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫(xiě)出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng).如果前三道題都答錯(cuò),就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同. ①求該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣5|﹣|x﹣2|.
(1)若x∈R,使得f(x)≤m成立,求m的范圍;
(2)求不等式x2﹣8x+15+f(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2﹣3x(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為y+2=0.
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于區(qū)間[﹣2,2]上任意兩個(gè)自變量的值x1 , x2都有|f(x1)﹣f(x2)|≤c,求實(shí)數(shù)c的最小值;
(3)若過(guò)點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com