【題目】已知函數(shù)在
單調(diào)遞增,其中
.
(1)求的值;
(2)若,當(dāng)
時,試比較
與
的大小關(guān)系(其中
是
的導(dǎo)函數(shù)),請寫出詳細(xì)的推理過程;
(3)當(dāng)時,
恒成立,求
的取值范圍.
【答案】(1) (2)略 (3)
【解析】試題分析:函數(shù)在某區(qū)間上單調(diào)遞增,只需函數(shù)的導(dǎo)數(shù)大于零在此區(qū)間上恒成立,利用恒成立極值原理求出滿足的條件,求出
的值;第二步比較大小可以轉(zhuǎn)化為研究函數(shù)
的單調(diào)性和極值問題去解決,第三步可以利用作差法構(gòu)造函數(shù),通過利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,達(dá)到證明不等式的目的.
試題解析:
(1)∵在
單調(diào)遞增,
∴
在
上恒成立,即
(
)恒成立,
∵當(dāng)時,
,
∴,又
,∴
,
∴,∴
.
(2)由(1)可知,
∴,∴
,
∴,
令,
,
∴,
,
∴在
上單調(diào)遞增,∴
,
令,則
在
單調(diào)遞減,
∵,
,
∴,使得
在
單調(diào)遞增,在
單調(diào)遞減,
∵,
,
∴,
∴,
又兩個函數(shù)的最小值不同時取得,
∴,即
.
(3)∵恒成立,即
恒成立,
令,則
,
由(1)得,即
(
),∴
(
),
即(
),∴
,
∴,
當(dāng)時,∵
,∴
,
∴單調(diào)遞減,∴
,符合題意;
當(dāng)時,
在
上單調(diào)遞增,
∴,
∴單調(diào)遞增,∴
符合題意,
當(dāng)時,
,∴
在
上單調(diào)遞增,
又,且
,
,
∴在
存在唯一零點(diǎn)
,
在
單調(diào)遞減,在
單調(diào)遞增,
∴當(dāng)時,
,
∴在
單調(diào)遞減,∴
,不合題意.
綜上, .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不交于同一點(diǎn)的三條直線l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)當(dāng)這三條直線不能圍成三角形時,求實(shí)數(shù)m的值.
(2)當(dāng)l3與l1 , l2都垂直時,求兩垂足間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
(1)求證:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,
,
,
,
,
分別為
,
的中點(diǎn),
平面
.
(1)求證: 平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f(
)的值,并計(jì)算f(2)+f(
),f(4)+f(
);
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f(
)+…f(
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= 叫曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題: 1)函數(shù)y=x3﹣x2+1圖象上兩點(diǎn)A、B的橫坐標(biāo)分別為1,2,則φ(A,B)>
;
2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
3)設(shè)點(diǎn)A、B是拋物線,y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
4)設(shè)曲線y=ex上不同兩點(diǎn)A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,則實(shí)數(shù)t的取值范圍是(﹣∞,1);
以上正確命題的序號為(寫出所有正確的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇3,6],則函數(shù)y= 的定義域?yàn)椋?/span> )
A.[ ,+∞)
B.[ ,2)
C.( ,+∞)
D.[ ,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)是
軸上的一個定點(diǎn),其橫坐標(biāo)為
(
),已知當(dāng)
時,動圓
過點(diǎn)
且與直線
相切,記動圓
的圓心
的軌跡為
.
(Ⅰ)求曲線的方程;
(Ⅱ)當(dāng)時,若直線
與曲線
相切于點(diǎn)
(
),且
與以定點(diǎn)
為圓心的動圓
也相切,當(dāng)動圓
的面積最小時,證明:
、
兩點(diǎn)的橫坐標(biāo)之差為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
(1)函數(shù)f(x)在x>0時是增函數(shù),x<0時也是增函數(shù),所以f(x)是增函數(shù);
(2)若m=loga2,n=logb2且m>n,則a<b;
(3)函數(shù)f(x)=x2+2(a﹣1)x+2在區(qū)間(﹣∞,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是a≤﹣3;
(4)y=log (x2+x﹣2)的減區(qū)間為(1,+∞).
其中正確的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com