是否存在實(shí)數(shù)a,使函數(shù)f(x)=1oga(ax2-x)在區(qū)間[2,4]上是增函數(shù)?若存在,說(shuō)明a可取哪些值;若不存在,說(shuō)明理由.

答案:
解析:

  解:設(shè)(x)=ax2-x,

 、佼(dāng)a>1時(shí),要使f(x)=loga(ax2-x)在x∈[2,4]時(shí)為增函數(shù),

  則(x)=ax2-x在[2,4]亦為增函數(shù).

  故≤2且(2)=4a-2>0,

  ∴a>,即a>1.

 、诋(dāng)0<a<時(shí),要使f(x)=loga(ax2-x)在x∈[2,4]為增函數(shù),

  則(x)=ax2-x在[2,4]為減函數(shù),

  故≥4且(4)=16a-4>0,此時(shí)a不存在.

  綜上,符合條件的a的范圍為a>1.

  分析:分a>1或0<a<1討論,確定符合條件的a有哪些值.

  點(diǎn)評(píng) 以上解題過(guò)程中應(yīng)用了復(fù)合函數(shù)的知識(shí).本題如果利用導(dǎo)數(shù)這一先進(jìn)的工具來(lái)解,則更為迅速有效,請(qǐng)大家試試看.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉,且給出推理過(guò)程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a使函數(shù)f(x)=
5x-a
x+2
在D2上封閉,若存在,求出a的值,并給出證明,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問(wèn):是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)1<x<2時(shí),是否存在實(shí)數(shù)a使y=x2-3(a+1)x+2(3a+1)的函數(shù)值小于0恒成立,若存在,則a的范圍是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉,且給出推理過(guò)程f1(x)=2x-1,f2(x)=數(shù)學(xué)公式,f3(x)=2x-1,f4(x)=cosx.;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a使函數(shù)f(x)=數(shù)學(xué)公式在D2上封閉,若存在,求出a的值,并給出證明,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷下列函數(shù)中哪些在D1上封閉,且給出推理過(guò)程f1(x)=2x-1,f2(x)=-
1
2
x2-
1
2
x+1
,f3(x)=2x-1,f4(x)=cosx.;
(2)若定義域D2=(1,2),是否存在實(shí)數(shù)a使函數(shù)f(x)=
5x-a
x+2
在D2上封閉,若存在,求出a的值,并給出證明,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案