第16屆亞運會于2010年11月12日在廣州舉辦,運動會期間來自廣州大學(xué)和中山大學(xué)的共計6名大學(xué)生志愿者將被隨機(jī)平均分配到跳水、籃球、體操這三個比賽場館服務(wù),且跳水場館至少有一名廣州大學(xué)志愿者的概率是.
(1)求6名志愿者中來自廣州大學(xué)、中山大學(xué)的各有幾人?
(2)設(shè)隨機(jī)變量X為在體操比賽場館服務(wù)的廣州大學(xué)志愿者的人數(shù),求X的分布列及均值.

(1)2  4    (2) X的分布列為

X
0
1
2
P



解析解:(1)記“至少一名廣州大學(xué)志愿者被分到跳水比賽場館”為事件A,則A的對立事件為“沒有廣州大學(xué)志愿者被分到跳水比賽場館”,
設(shè)有廣州大學(xué)志愿者x人(1≤x<6),
則P(A)=1-,即x2-11x+18=0,
解得x=2或x=9(舍去),
即來自廣州大學(xué)的志愿者有2人,來自中山大學(xué)的志愿者有4人.
(2)X的所有可能取值為0,1,2.
P(X=0)=,P(X=1)=,
P(X=2)=.
故X的分布列為

X
0
1
2
P



從而E(X)=0×+1×+2× (人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場為促銷設(shè)計了一個抽獎模型,一定數(shù)額的消費可以獲得一張抽獎券,每張抽獎券可以從一個裝有大小相同的4個白球和2個紅球的口袋中一次性摸出3個球,至少摸到一個紅球則中獎.
(1)求一次抽獎中獎的概率;
(2)若每次中獎可獲得10元的獎金,一位顧客獲得兩張抽獎券,求兩次抽獎所得的獎金額之和X(元)的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機(jī)抽取了40名市民,得到數(shù)據(jù)如下表:

 
患心肺疾病
不患心肺疾病
合計
大于40歲
16
 
 
小于等于40歲
 
12

合計
 
 
40
已知在全部的40人中隨機(jī)抽取1人,抽到不患心肺疾病的概率為
(1)請將列聯(lián)表補(bǔ)充完整;
(2)已知大于40歲患心肺疾病市民中,經(jīng)檢查其中有4名重癥患者,專家建議重癥患者住院治療,現(xiàn)從這16名患者中選出兩名,記需住院治療的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為患心肺疾病與年齡有關(guān)?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個生物小組分別獨立開展對該生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗一個生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗后生物成活,則稱該試驗成功,如果生物不成活,則稱該次試驗是失敗的.
(1)甲小組做了三次試驗,求至少兩次試驗成功的概率;
(2)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進(jìn)行2次試驗,設(shè)試驗成功的總次數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩藥廠生產(chǎn)同一型號藥品,在某次質(zhì)量檢測中,兩廠各有5份樣品送檢,檢測的平均得分相等(檢測滿分為100分,得分高低反映該樣品綜合質(zhì)量的高低).成績統(tǒng)計用莖葉圖表示如下:


 

9 8
8
4  8 9
2 1 0
9
  6
 
(1)求
(2)某醫(yī)院計劃采購一批該型號藥品,從質(zhì)量的穩(wěn)定性角度考慮,你認(rèn)為采購哪個藥廠的產(chǎn)品
比較合適?
(3)檢測單位從甲廠送檢的樣品中任取兩份作進(jìn)一步分析,在抽取的兩份樣品中,求至少有一份得分在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

箱子里有3雙不同的手套,隨機(jī)拿出2只,記事件A表示“拿出的手套配不成對”;事件B表示“拿出的都是同一只手上的手套”.
(1)請列出所有的基本事件;
(2)分別求事件A、事件B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)IEC(國際電工委員會)調(diào)查顯示,小型風(fēng)力發(fā)電項目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項目投資存在一定風(fēng)險.根據(jù)測算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

假設(shè)投資A項目的資金為≥0)萬元,投資B項目資金為≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項目獲利的可能性為,虧損的可能性為;位于二類風(fēng)區(qū)的B項目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項目的利潤分別為,試寫出隨機(jī)變量的分布列和期望,
(2)某公司計劃用不超過萬元的資金投資于A,B項目,且公司要求對A項目的投
資不得低于B項目,根據(jù)(1)的條件和市場調(diào)研,試估計一年后兩個項目的平均利
潤之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

觀察下面一組組合數(shù)等式:
;
;
;
…………
(1)由以上規(guī)律,請寫出第個等式并證明;
(2)隨機(jī)變量,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有6道題,其中4道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求:
(1)所取的2道題都是甲類題的概率;
(2)所取的2道題不是同一類題的概率.

查看答案和解析>>

同步練習(xí)冊答案