已知函數(shù)
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若上恒成立,求實數(shù)的取值范圍;
(III)過點作函數(shù)圖像的切線,求切線方程
(I);(II) ;(III).

試題分析:(I)本題函數(shù)式是一個乘積的形式.求函數(shù)的單調(diào)遞減區(qū)間,令導(dǎo)函數(shù)小于零,可求得x的范圍,本小題兩個知識點要注意.首先是定義域x>0;其次是含對數(shù)的不等式的解法.(II)關(guān)于恒成立的問題通過整理后用分離變量較好,最小值在的定義域上,通過求導(dǎo)可知函數(shù)的單調(diào)性即可求出函數(shù)g(x)的最大值.本小題涉及對數(shù)函數(shù)的求導(dǎo)和分式函數(shù)的求導(dǎo),要認真對待.(III)求函數(shù)的切線,首先判斷該點有沒有在函數(shù)圖像上.通過分析A點不在函數(shù)圖像上.通過假設(shè)切點的坐標.求出在切點的切線的斜率,通過A點和切點再算一次斜率即可得一個等式.通過研究該等式的解的情況即可得切線的方程.本小題要具備估算的能力.含對數(shù)的函數(shù)要關(guān)注定義域的范圍,通過求導(dǎo)了解函數(shù)的圖像的走向是解題的關(guān)鍵. 
試題解析:(Ⅰ)                          2分
函數(shù)的單調(diào)遞減區(qū)間是;                  4分
(Ⅱ)
設(shè)            6分
,函數(shù)單調(diào)遞減;
,函數(shù)單調(diào)遞增;
最小值實數(shù)的取值范圍是;  7分
(Ⅲ)設(shè)切點
設(shè),當是單調(diào)遞增函數(shù)  10分
最多只有一個根,又
得切線方程是.                        12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),.
(1)若曲線在它們的交點處有相同的切線,求實數(shù)的值;
(2)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求實數(shù)的取值范圍;
(3)當時,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對任意,總存在,使得.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),
(1)當時,函數(shù)取得極值,求的值;
(2)當時,求函數(shù)在區(qū)間[1,2]上的最大值;
(3)當時,關(guān)于的方程有唯一實數(shù)解,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當時,令(),()為曲線y=上的兩動點,O為坐標原點,能否使得是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x=1是函數(shù)的一個極值點,
(Ⅰ)求a的值;
(Ⅱ)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),其對應(yīng)的圖像為曲線C;若曲線C過,且在點處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法不正確的是(     )
A.方程有實數(shù)根函數(shù)有零點
B.函數(shù)有兩個零點
C.單調(diào)函數(shù)至多有一個零點
D.函數(shù)在區(qū)間上滿足,則函數(shù)在區(qū)間內(nèi)有零點

查看答案和解析>>

同步練習冊答案