已知Q(
3
,0)
,P為拋物線x2=4y上的動(dòng)點(diǎn),若P到拋物線的準(zhǔn)線y=-1的距離為d,記拋物線的焦點(diǎn)為F(0,1),則d+|PQ|的最小值是( 。
分析:利用拋物線的定義,將P到拋物線的準(zhǔn)線y=-1的距離轉(zhuǎn)化為P到焦點(diǎn)的距離,再利用P,Q,F(xiàn)三點(diǎn)共線時(shí),d+|PQ|取得最小,即可求得結(jié)論.
解答:解:∵P到拋物線的準(zhǔn)線y=-1的距離為d,拋物線的焦點(diǎn)為F(0,1),
∴d+|PQ|=|PF|+|PQ|
∴當(dāng)且僅當(dāng)P,Q,F(xiàn)三點(diǎn)共線時(shí),d+|PQ|取得最小,最小值為|FQ|
∵F(0,1),Q(
3
,0)

∴|FQ|=2
即d+|PQ|的最小值是2
故選B.
點(diǎn)評(píng):本題重點(diǎn)考查拋物線的定義,考查距離和的最小值,解題的關(guān)鍵是利用拋物線的定義,將P到拋物線的準(zhǔn)線y=-1的距離轉(zhuǎn)化為P到焦點(diǎn)的距離,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OF1
=(-3,0),
OF2
=(3,0)
,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足|
MF1
| +|
MF2
| =10

(1)求動(dòng)點(diǎn)M的軌跡C;
(2)若點(diǎn)P、Q是曲線C上的任意兩點(diǎn),且
OP
OQ
=0
,求
PQ
2
OP
2
OQ
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1(-
3
,0),F2(
3
,0)
,點(diǎn)P滿足|
PF
1
|+|
PF
2
|=4
,記點(diǎn)P的軌跡為E,
(1)求軌跡E的方程;
(2)如果過(guò)點(diǎn)Q(0,m)且方向向量為
c
=(1,1)的直線l與點(diǎn)P的軌跡交于A,B兩點(diǎn),當(dāng)
OA
OB
=0
時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M(-
3
,0),N(
3
,0)
是平面上的兩個(gè)定點(diǎn),動(dòng)點(diǎn)P滿足|PM|+|PN|=2
6

(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)已知圓方程為x2+y2=2,過(guò)圓上任意一點(diǎn)作圓的切線,切線與(1)中的軌跡交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)Q為AB的中點(diǎn),求|OQ|長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動(dòng)點(diǎn),且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點(diǎn)P的軌跡加上MN兩點(diǎn)構(gòu)成曲線C.

求曲線C的方程并討論曲線C的形狀;

(2) 若,曲線C過(guò)點(diǎn)Q (2,0) 斜率為的直線與曲線C交于不同的兩點(diǎn)ABAB中點(diǎn)為R,直線OR (O為坐標(biāo)原點(diǎn))的斜率為,求證 為定值;

(3) 在(2)的條件下,設(shè),且,求y軸上的截距的變化范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案