正四棱錐S-ABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC所成的角是    
【答案】分析:由題意由于圖中已有了兩兩垂直的三條直線,所以可以建立空間直角坐標(biāo)系,先準(zhǔn)確寫出個點(diǎn)的坐標(biāo),利用線面角和線與平面的法向量所構(gòu)成的兩向量的夾角之間的關(guān)系即可求解.
解答:解:如圖所示,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz.
設(shè)OD=SO=OA=OB=OC=a,
則A(a,0,0),B(0,a,0),
C(-a,0,0),P
則C=(2a,0,0),A=
C=(a,a,0).
設(shè)平面PAC的法向量為n,可求得n=(0,1,1),
則cos<C,n>═=
∴<C,n>=60°,
∴直線BC與平面PAC所成的角為90°-60°=30°.
故答案為:30°
點(diǎn)評:此題重點(diǎn)考查了直線與平面所成的角的概念及利用空間向量的方法求解空間之中的直線與平面的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正四棱錐S-ABCD中,E是側(cè)棱SC的中點(diǎn),異面直線SA和BC所成角的大小是60°.
(1)求證:直線SA∥平面BDE;
(2)求二面角A-SB-D的余弦值;
(3)求直線BD和平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐S-ABCD,底面上的四個頂點(diǎn)A、B、C、D在球心為O的半球底面圓周上,頂點(diǎn)S在半球面上,則半球O的體積和正四棱錐S-ABCD的體積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、如圖在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動,并且總是保持PE⊥AC,則動點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐S-ABCD中,側(cè)棱與底面所成的角為α,側(cè)面與底面所成的角為β,側(cè)面等腰三角形的底角為γ,相鄰兩側(cè)面所成的二面角為θ,則α、β、γ、θ的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四棱錐S-ABCD中,點(diǎn)O是底面中心,SO=2,側(cè)棱SA=2
3
,則該棱錐的體積為
32
3
32
3

查看答案和解析>>

同步練習(xí)冊答案