已知c是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的半焦距,則
2b+c
2a
的取值范圍是(  )
A、(
1
2
,+∞)
B、(
1
2
,
5
2
]
C、(
1
2
,
2
]
D、(
1
2
,1]
考點:橢圓的簡單性質(zhì)
專題:綜合題,三角函數(shù)的求值,圓錐曲線的定義、性質(zhì)與方程
分析:
2b+c
2a
=
b
a
+
1
2
1-(
b
a
)2
,再利用三角換元,即可求出
2b+c
2a
的取值范圍.
解答: 解:
2b+c
2a
=
b
a
+
1
2
1-(
b
a
)2
,
∵a>b>0,
∴0<
b
a
<1.
設(shè)
b
a
=cosθ(θ∈(0,
π
2
),則
2b+c
2a
=cosθ+
1
2
sinθ=
5
2
sin(θ+α)
∵θ∈(0,
π
2
),∴
2b+c
2a
∈(
1
2
5
2
].
故選:B.
點評:本題考查橢圓的簡單性質(zhì),考查三角函數(shù)知識,正確換元是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示,則下列說法中正確的個數(shù)是( 。
①當x=
3
2
時函數(shù)取得極小值;
②f(x)有兩個極值點;
③x=2是函數(shù)的極大值點;
④x=1是函數(shù)的極小值點.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)曲線C的參數(shù)方程為
x=3cosθ
y=3sinθ
(θ為參數(shù)),直線l的方程為x=2,則曲線C與直線l交點的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定映射fA→B:(x,y)→(2sinx,lg(cosy+1)),x,y∈[0,
π
2
],在映射f下A中與B中元素(1,0)的對應(yīng)元素為( 。
A、(0,0)
B、(
π
2
,0)
C、(0,
π
2
D、(
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復(fù)數(shù)z=2-
4
5
i(i是虛數(shù)單位)的虛部是( 。
A、
4
5
i
B、-
4
5
i
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四組函數(shù)中,表示同一個函數(shù)的是( 。
A、f(x)=x,g(x)=(
x
2
B、f(x)=x,g(x)=
x2
C、f(x)=x,g(x)=
x2
x
D、f(x)=x,g(x)=
3x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

地球北緯45°圈上有A,B兩地,分別在東經(jīng)120°和西經(jīng)150°處,若地球半徑為R,則A,B兩地的球面距離為(  )
A、
πR
6
B、
πR
3
C、
πR
2
D、
2πR
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F(1,0),離心率e=
2
2
,A,B是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線OA與OB的斜率乘積kOA•kOB=-
1
2
,動點P滿足
OP
=
OA
+
OB
(O為坐標原點).問是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求F1,F(xiàn)2的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項和,S3,S9,S6成等差數(shù)列,試求{an}的公比.

查看答案和解析>>

同步練習冊答案