己知函數(shù)f(x)=sinωx+
3
cosωx(ω>0),f(
π
6
)+f(
π
2
)=0,且f(x)在區(qū)間(
π
6
,
π
2
),上遞減,則ω=(  )
A、3B、2C、6D、5
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先通過三角恒等變換把函數(shù)變形成正弦型函數(shù),進一步利用整體思想利用區(qū)間與區(qū)間的子集關(guān)系求出ω的范圍,進一步利用代入法進行驗證求出結(jié)果.
解答: 解:f(x)=sinωx+
3
cosωx
=2sin(ωx+
π
3

所以:
π
2
+2kπ≤ωx+
π
3
≤2kπ+
2

當k=0時,
π
≤x≤

由于:f(x)在區(qū)間(
π
6
,
π
2
)單調(diào)遞減,
所以:
π
π
6
<x<
π
2

解不等式組得到:1≤ω≤
7
3

當ω=2時,f(
π
6
)+f(
π
2
)=0,
故選:B.
點評:本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)單調(diào)性的應(yīng)用,帶入驗證法的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABC-A1B1C1是地面邊長為2,高為
3
2
的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).
(1)證明:PQ∥A1B1;
(2)是否存在λ,使得平面CPQ⊥截面APQB?如果存在,求出λ的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線性變換T把點(1,-1)變成了點(1,0),把點(1,1)變成了點(0,1)
(Ⅰ)求變換T所對應(yīng)的矩陣M;
(Ⅱ)求直線y=-1在變換T的作用下所得到像的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文) 如圖,四棱錐S-ABCD中,底面ABCD為正方形,SA⊥平面ABCD,AB=3,SA=4
(1)求異面直線SC與AD所成角;
(2)求點B到平面SCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C:y2=4x,過點A(1,2)作拋物線C的弦AP,AQ.設(shè)直線PQ過點T(5,-2),則以PQ為底邊的等腰三角形APQ個數(shù)為 (  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進行分層抽樣調(diào)查,測得身高情況的統(tǒng)計圖如圖所示:
(1)估計該校男生的人數(shù);
(2)估計該校學(xué)生身高在170~185cm之間的概率;
(3)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城區(qū)2010年底居民住房面積為a m2,其中危舊住房占
1
3
,新型住房占
1
4
,為了加快住房建設(shè),計劃用10年時間全部拆除危舊住房(每年拆除的數(shù)量相同),且從2011年起,居民住房只建新型住房,使新型住房面積每年比上一年增加20%.以2011年為第一年,設(shè)第n年底該城區(qū)的居民住房總面積為an,寫出a1,a2,a3的表達式,并歸納出數(shù)列{an}的通項公式(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,E為AD上的點,EF⊥BC,垂足為F,沿EF將矩形ABFE折起,使二面角A-EF-C的大小為60°,連結(jié)AD,AC,BC.
(Ⅰ)若M為FC的中點,求證:AC∥平面BEM;
(Ⅱ)求直線CD與平面ABFE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷是否存在數(shù)列{an}同時滿足下列條件:
①{an}是等差數(shù)列,且公差不為0;
②數(shù)列{
1
an
}也是等差數(shù)列.
如果存在,寫出它的通項公式;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案