分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答 解:∵兩個(gè)正實(shí)數(shù)x,y滿足x+y=4,
則$\frac{1}{x}$+$\frac{4}{y}$=$\frac{1}{4}$(x+y)$(\frac{1}{x}+\frac{4}{y})$=$\frac{1}{4}$$(1+4+\frac{y}{x}+\frac{4x}{y})$=≥$\frac{1}{4}(5+2\sqrt{\frac{y}{x}×\frac{4x}{y}})$=$\frac{9}{4}$,當(dāng)且僅當(dāng)y=2x=$\frac{8}{3}$時(shí)取等號(hào).
故答案為:$\frac{9}{4}$.
點(diǎn)評(píng) 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z | B. | [-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z | ||
C. | [-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z | D. | [-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 35 | B. | 54 | C. | 72 | D. | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | -3 | C. | 10 | D. | -10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com