如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求△MPQ面積的最大值.

【答案】分析:(1)當(dāng)m=1時(shí),y2=4x,則F1(-1,0),F(xiàn)2(1,0).設(shè)橢圓方程為=1(a>b>0),由題設(shè)條件知c=1,a=2,b2=3,由此可知橢圓C2方程為=1.
(2)因?yàn)閏=m,e==,則a=2m,b2=3m2,設(shè)橢圓方程為,由,得3x2+16mx-12m2=0,得xP=代入拋物線方程得P(),由此得m=3,由此可求出△MPQ面積的最大值.
解答:解:(1)當(dāng)m=1時(shí),y2=4x,則F1(-1,0),F(xiàn)2(1,0)
設(shè)橢圓方程為=1(a>b>0),則c=1,又e==,所以a=2,b2=3
所以橢圓C2方程為=1(4分)
(2)因?yàn)閏=m,e==,則a=2m,b2=3m2
設(shè)橢圓方程為
,得3x2+16mx-12m2=0(6分)
即(x+6m)(3x-2m)=0,得xP=代入拋物線方程得yP=m,
即P(,
|PF2|=xP+m=,|PF1|=2a-|PF2|=4m-=,|F1F2|=2m=,
因?yàn)椤鱌F1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),所以m=3(8分)
此時(shí)拋物線方程為y2=12x,P(2,2),直線PQ方程為:y=-2(x-3).
聯(lián)立,得2x2-13x+18=0,即(x-2)(2x-9)=0,
所以xQ=,代入拋物線方程得yQ=-3,即Q(,-3
∴|PQ|==
設(shè)M(,t)到直線PQ的距離為d,t∈(-3,2
則d==|(t+2-|(10分)
當(dāng)t=-時(shí),dmax==,
即△MPQ面積的最大值為××=.(12分)
點(diǎn)評(píng):本題考查直線與圓錐曲線的綜合問(wèn)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線c1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2,以F1、F2為焦點(diǎn),離心率e=
12
的橢圓c2與拋物線c1在x軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓的方程;
(2)在(1)的條件下,直線l經(jīng)過(guò)橢圓c2的右焦點(diǎn)F2,與拋物線c1交于A1、A2,如果以線段A1A2為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說(shuō)明理由;
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求拋物線方程;此時(shí)設(shè)⊙C1、⊙C2…⊙Cn是圓心在y2=4mx(m>0)上的一系列圓,它們的圓心縱坐標(biāo)分別為a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都與y軸相切,且順次逐個(gè)相鄰?fù)馇,求?shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交地F1,焦點(diǎn)為F2,以F1、F2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C2在x軸上方的交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng),當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1、F2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(2)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)的條件下,直線l經(jīng)過(guò)橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1、A2,如果以線段A1A2為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案