【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,為橢圓上一點(diǎn),且垂直于軸,連結(jié)并延長(zhǎng)交橢圓于另一點(diǎn),設(shè).
(1)若點(diǎn)的坐標(biāo)為,求橢圓的方程及的值;
(2)若,求橢圓的離心率的取值范圍.
【答案】(1);(2)
【解析】
(1)把的坐標(biāo)代入方程得到,結(jié)合解出后可得標(biāo)準(zhǔn)方程.求出直線的方程,聯(lián)立橢圓方程和直線方程后可求的坐標(biāo),故可得的值.
(2)因,故可用表示的坐標(biāo),利用它在橢圓上可得與的關(guān)系,化簡(jiǎn)后可得與離心率的關(guān)系,由的范圍可得的范圍.
(1)因?yàn)?/span>垂直于軸,且點(diǎn)的坐標(biāo)為,
所以,,
解得,,所以橢圓的方程為.
所以,直線的方程為,
將代入橢圓的方程,解得,
所以.
(2)因?yàn)?/span>軸,不妨設(shè)在軸上方,,.設(shè),因?yàn)?/span>在橢圓上,所以,解得,即.
(方法一)因?yàn)?/span>,由得,,,解得,,所以.
因?yàn)辄c(diǎn)在橢圓上,所以,即,所以,從而.
因?yàn)?/span>,所以.
解得,
所以橢圓的離心率的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線的斜率為3,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上存在極小值,求實(shí)數(shù)的取值范圍;
(3)如果的解集中只有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知若,則稱為的原函數(shù),此時(shí)所有的原函數(shù)為,其中為常數(shù),如:,則(為常數(shù)).現(xiàn)已知函數(shù)的導(dǎo)函數(shù)為且對(duì)任意的實(shí)數(shù)都有(是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)去大多數(shù)人采用儲(chǔ)蓄的方式將錢儲(chǔ)蓄起來(lái),以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來(lái)儲(chǔ)蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來(lái),為了研究某種理財(cái)工具的使用情況,現(xiàn)對(duì)年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成組:,并整理得到頻率分布直方圖:
(1)求圖中的值;
(2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取人,則三個(gè)組中各抽取多少人?
(3)在(2)中抽取的人中,隨機(jī)抽取人,則這人都來(lái)自于第三組的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年2月22日上午,山東省省委、省政府在濟(jì)南召開(kāi)山東省全面展開(kāi)新舊動(dòng)能轉(zhuǎn)換重大工程動(dòng)員大會(huì),會(huì)議動(dòng)員各方力量,迅速全面展開(kāi)新舊動(dòng)能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖3是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.
表1:設(shè)備改造后樣本的頻數(shù)分布表
(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);
(2)根據(jù)圖3和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;
(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件售價(jià)180元;其它的合格品定為三等品,每件售價(jià)120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是離心率為的橢圓 兩焦點(diǎn),若存在直線,使得,關(guān)于的對(duì)稱點(diǎn)的連線恰好是圓 的一條直徑.
(1)求橢圓的方程;
(2)過(guò)橢圓的上頂點(diǎn)作斜率為,的兩條直線,,兩直線分別與橢圓交于,兩點(diǎn),當(dāng)時(shí),直線是否過(guò)定點(diǎn)?若是求出該定點(diǎn),若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com