設橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的標準方程;
(2)設直線l與橢圓C1交于不同兩點M、N,且
OM
ON
=0
,請問是否存在這樣的直線l過拋物線C2的焦點F?若存在,求出直線l的方程;若不存在,說明理由.
(1)設拋物線C2:y2=2px(p≠0),則有
y2
x
=2p(x≠0)
,
據(jù)此驗證5個點知只有(3,-2
3
)、(4,-4)在統(tǒng)一拋物線上,易求C2:y2=4x(2分)
C2
x2
a2
+
y2
b2
=(a>b>0)
,把點(-2,0)(
2
2
2
)代入得
4
a2
=1
2
a2
+
1
2b2
=1
解得
a2=4
b2=1

∴C2方程為
x2
4
+y2=1
(5分)
(2)假設存在這樣的直線l過拋物線焦點F(1,0)
設其方程為x-1=my,設M(x1,y1),N(x2,y2),
OM
ON
=0
.得x1x2+y1y2=0(*)(7分)
x-1=my
x2
4
+y2=1
消去x,得(m2+4)y2+2my-3=0,△=16m2+48>0
y1+y2=
-2m
m2+4
,y1y2=
-3
m2+4

x1x2=(1+my1)(1+my2)=1+m(y1+y2)+m2y1y2
=1+m•
-2m
m2+4
+m2
-3
m2+4
=
4-4m2
m2+4
②(9分)
將①②代入(*)式,得
4-4m2
m2+4
+
-3
m2+4
=0

解得m=±
1
2
(11分),
∴假設成立,即存在直線l過拋物線焦點Fl的方程為:2x±y-2=0(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的中心和拋物線C2的頂點都在原點,且兩曲線的焦點均在x軸上,若A(1,2),B(2,0),C(
2
,
2
2
)
中有兩點在橢圓C1上,另一點在拋物線C2上.
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)設直線l與橢圓C1交于M,N兩點,與拋物線C2交于P,Q兩點.問是否存在直線l使得以線段MN為直徑的圓和以線段PQ為直徑的圓都過原點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓 C1
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點與拋物線 C2x2=4
3
y
 的焦點重合,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,離心率 e=
1
2
,過橢圓右焦點 F2的直線 l 與橢圓 C 交于 M,N 兩點.
(1)求橢圓C的方程;
(2)是否存在直線 l,使得 
OM
ON
=-2
,若存在,求出直線 l 的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•海淀區(qū)二模)設橢圓C1的中心在原點,其右焦點與拋物線C2:y2=4x的焦點F重合,過點F與x軸垂直的直線與C1交與A、B兩點,與C2交于C、D兩點,已知
|CD|
|AB|
=
4
3

(1)求橢圓C1的方程
(2)過點F的直線l與C1交與M、N兩點,與C2交與P、Q兩點,若
|PQ|
|MN|
=
5
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•海淀區(qū)二模)設橢圓C1的中心在原點,其右焦點與拋物線C2:y2=4x的焦點F重合,過點F與x軸垂直的直線與C1交于A、B兩點,與C2交于C、D兩點,已知
|CD|
|AB|
=
4
3

(Ⅰ)過點F且傾斜角為
π
3
的直線與C2:y2=4x交于P、Q兩點,求|PQ|的值;
(Ⅱ)求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德州一模)設橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一個頂點與拋物線C2x2=4
2
y
的焦點重合,F(xiàn)1、F2分別是橢圓的左、右焦點,離心率e=
3
3
,過橢圓右焦點F2的直線l與橢圓C交于M、N兩點.
(I)求橢圓C的方程;
(Ⅱ)是否存在直線l,使得
OM
ON
=-1
,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案