某幾何體的三視圖如圖所示,則該幾何體的體積是
 

考點(diǎn):由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:幾何體為正四棱柱消去一個三棱錐,根據(jù)三視圖判斷相關(guān)幾何量的數(shù)據(jù),代入棱柱與棱錐的體積公式計算.
解答: 解:由三視圖知:幾何體為正四棱柱消去一個三棱錐,如圖:

正四棱柱的底面邊長為2,高為3,
消去的三棱錐的高為3,底面直角三角形的兩直角邊長分別為2、1,
∴幾何體的體積V=22×3-
1
3
×
1
2
×2×1×3=11.
故答案為:11.
點(diǎn)評:本題考查了由三視圖求幾何體的體積,判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有兩個命題:p:不等式|x|+|x-1|≥m的解集為R;q:函數(shù)f(x)=-(7-3m)x是減函數(shù).若這兩個命題中有且只有一個真命題,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
2i
1+i
(i為虛數(shù)單位)對應(yīng)點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知|AB|=10,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,n,….利用這兩組同心圓可以畫出以A、B為焦點(diǎn)的橢圓或雙曲線.若其中經(jīng)過點(diǎn)M、N的橢圓的離心率分別是eM,eN,經(jīng)過點(diǎn)P,Q的雙曲線的離心率分別是eP,eQ,則它們的大小關(guān)系是
 
(用“<”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={f(x,y)=0|f(x,y)=(x-a)2+(y-a)2-
a2
2
,a=±1,±2,±3},B={g(x,y)=0|g(x,y)=x+y-b,b=±1,±2,±3},則A中方程的曲線與B中方程的曲線的交點(diǎn)個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<π )的圖象的一部分,該函數(shù)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于曲線x2-xy+y2=1有以下判斷,其中正確的有
 
(填上相應(yīng)的序號即可).
(1)它表示圓;
(2)它關(guān)于原點(diǎn)對稱;
(3)它關(guān)于直線y=x對稱;
(4)|x|≤1,|y|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+π)=f(x),且當(dāng)x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為(  )
A、-
1
2
B、
3
2
C、-
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ<0且cosθ>0,則角θ為(  )
A、θ是第一象限的角
B、θ是第二象限的角
C、θ是第三象限的角
D、θ是第四象限的角

查看答案和解析>>

同步練習(xí)冊答案