【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條

【答案】B
【解析】解:方程變形得 ,若表示拋物線,則a≠0,b≠0,所以分b=﹣3,﹣2,1,2,3五種情況:
(1)當(dāng)b=﹣3時(shí),a=﹣2,c=0,1,2,3或a=1,c=﹣2,0,2,3或a=2,c=﹣2,0,1,3或a=3,c=﹣2,0,1,2;
(2)當(dāng)b=3時(shí),a=﹣2,c=0,1,2,﹣3或a=1,c=﹣2,0,2,﹣3或a=2,c=﹣2,0,1,﹣3或a=﹣3,c=﹣2,0,1,2;
以上兩種情況下有9條重復(fù),故共有16+7=23條;
(3)同理當(dāng)b=﹣2或b=2時(shí),共有16+7=23條;
(4)當(dāng)b=1時(shí),a=﹣3,c=﹣2,0,2,3或a=﹣2,c=﹣3,0,2,3或a=2,c=﹣3,﹣2,0,3或a=3,c=﹣3,﹣2,0,2;
共有16條.
綜上,共有23+23+16=62種
故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=cos2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后向左平移1個(gè)單位長度,再向下平移1個(gè)單位長度,得到的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的方程是,).

(1)當(dāng),時(shí),求曲線圍成的區(qū)域的面積;

(2)若直線與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中是自然常數(shù).

(1)判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說明理由;

(2),,使得不等式成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在區(qū)間[2,3]上有最大值1.

1)求的值;

2)求函數(shù)在區(qū)間上的值域;

3)若在[2,4]上單調(diào),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“我將來要當(dāng)一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個(gè)大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設(shè)霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設(shè)中邊所對的角為中邊所對的角為,經(jīng)測量已知.

1)霍爾頓發(fā)現(xiàn)無論多長,為一個(gè)定值,請你驗(yàn)證霍爾頓的結(jié)論,并求出這個(gè)定值;

2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關(guān),記的面積分別為,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x) 為奇函數(shù).

(1)b的值;

(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);

(3)解關(guān)于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】食品安全一直是人們關(guān)心和重視的問題,學(xué)校的食品安全更是社會(huì)關(guān)注的焦點(diǎn).某中學(xué)為了加強(qiáng)食品安全教育,隨機(jī)詢問了36名不同性別的中學(xué)生在購買食品時(shí)是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:

總計(jì)

看保質(zhì)期

8

22

不看保持期

4

14

總計(jì)

(1)請將列聯(lián)表填寫完整,并根據(jù)所填的列聯(lián)表判斷,能否有的把握認(rèn)為“性別”與“是否看保質(zhì)期”有關(guān)?

(2)從被詢問的14名不看保質(zhì)期的中學(xué)生中,隨機(jī)抽取3名,求抽到女生人數(shù)的分布列和數(shù)學(xué)期望.

附:,().

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案