將函數(shù)f(x)=sin2x-
3
cos2x
的圖象向左平移m個(gè)單位(m>0),(
π
2
,0)
是所得函數(shù)的圖象的一個(gè)對(duì)稱中心,則m的最小值為( 。
分析:f(x)解析式提取2變形后,利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),利用平移規(guī)律得出g(x)解析式,根據(jù)(
π
2
,0)為g(x)圖象的一個(gè)對(duì)稱中心,根據(jù)m大于0即可確定出m的最小值.
解答:解:f(x)=sin2x-
3
cos2x=2sin(2x-
π
3
),
向左平移m個(gè)單位得到g(x)=2sin[2(x+m)-
π
3
]=2sin(2x+2m-
π
3
),
∴g(
π
2
)=2sin(2×
π
2
+2m-
π
3
)=2sin(2m+
3
)=0,
∴2m+
3
=kπ,k∈Z,
∵m>0,
∴m的最小值為
π
6
,
故選B
點(diǎn)評(píng):此題考查了兩角和與差的正弦函數(shù)公式,以及三角函數(shù)的圖象變換,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
cosωxsinωx(ω>0)
,且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)若將函數(shù)y=f(x)的圖象向右平移
π
12
個(gè)單位長(zhǎng)度,再將所得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+1
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
6
個(gè)單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,
3
]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωxcosωx(ω>0)
的最小正周期為3π.
(1)將函數(shù)f(x)的圖象向左平移
π
4
單位后得到函數(shù)g(x)的圖象,求g(x)在區(qū)間[0,2π]上的值域;
(2)若sin(θ+ωπ)=
3
3
,且0<θ<
π
2
,求sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=sin2ωx+
3
cosωxsinωx(ω>0)
,且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)若將函數(shù)y=f(x)的圖象向右平移
π
12
個(gè)單位長(zhǎng)度,再將所得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:選擇題

將函數(shù)f (x)=sin2 x (xR)的圖象向右平移個(gè)單位,則所得到的圖象對(duì)應(yīng)的函數(shù)的一個(gè)單調(diào)遞增區(qū)間是

A.(-,0)    B.(0,)    C.(,)    D.(π)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案