【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分別是PA,BC的中點(diǎn),且AD=2PD=2.

(1)求證:MN∥平面PCD;

(2)求證:平面PAC⊥平面PBD;

(3)求四棱錐P-ABCD的體積.

【答案】(1)見解析 (2)見解析(3)

【解析】

(1)先證明平面MEN∥平面PCD,再由面面平行的性質(zhì)證明MN∥平面PCD;

(2)證明AC⊥平面PBD,即可證明平面PAC⊥平面PBD;

(3)利用錐體的體積公式計(jì)算即可.

(1)證明:取AD的中點(diǎn)E,連接ME、NE,

MNPA、BC的中點(diǎn),

∴在△PAD和正方形ABCD中,MEPD,NECD;

又∵MENE=E,PDCD=D,

∴平面MEN∥平面PCD

MN平面MNE,

MN∥平面PCD

(2)證明:∵四邊形ABCD是正方形,

ACBD,

又∵PD⊥底面ABCD,

PDAC

PDBD=D,

AC⊥平面PBD,

∴平面PAC⊥平面PBD;

(3)PD⊥底面ABCD

PD是四棱錐P-ABCD的高,且PD=1,

∴正方形ABCD的面積為S=4,

∴四棱錐P-ABCD的體積為

VP-ABCD=×S四邊形ABCD×PD=×4×1=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中點(diǎn).

(1)求證:平面PBC⊥平面PCD;
(2)設(shè)點(diǎn)N是線段CD上一動(dòng)點(diǎn),且 ,當(dāng)直線MN與平面PAB所成的角最大時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地有三家工廠,分別位于矩形ABCD 的頂點(diǎn)AB CD的中點(diǎn)P 處,已知AB=20km,CB =10km ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域上(含邊界),且與A、B等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AOBO、OP ,設(shè)排污管道的總長(zhǎng)度為km

1)按下列要求寫出函數(shù)關(guān)系式:①設(shè)∠BAO= (rad),將表示成的函數(shù);②設(shè)OP (km) ,將表示成的函數(shù).

2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使鋪設(shè)的排污管道總長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品在近天內(nèi)每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系是:

,該商品的日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天?(商品的日銷售金額=該商品的銷售價(jià)格日銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。

A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是正方形,PA底面ABCD,PA=2,PDA=45,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF平面PCE;

(2)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求點(diǎn)C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=a--lnx,gx=ex-ex+1

1)若a=2,求函數(shù)fx)在點(diǎn)(1,f1))處的切線方程;

2)若fx=0恰有一個(gè)解,求a的值;

3)若gx≥fx)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案