【題目】已知橢圓具有如下性質(zhì):若、是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn),當(dāng)直線、的斜率都存在,并記為、時(shí),則與之積是與點(diǎn)位置無(wú)關(guān)的定值.試寫出雙曲線具有的類似的性質(zhì),并加以證明.
【答案】若M、N是雙曲線:=1上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是雙曲線上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM,kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.
【解析】
類似的性質(zhì)為:若M、N是雙曲線:=1上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是雙曲線上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM,kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值.證明如下:
設(shè)點(diǎn)M的坐標(biāo)為(m,n),則點(diǎn)N的坐標(biāo)為(-m,-n),其中=1.
又設(shè)點(diǎn)P的坐標(biāo)為(x,y),由kPM=,kPN=,得kPM·kPN=·=,
將y2=x2-b2,n2=m2-b2代入得kPM·kPN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)“挑戰(zhàn)主持人”節(jié)目的挑戰(zhàn)者闖第一關(guān)需要回答三個(gè)問(wèn)題,其中前兩個(gè)問(wèn)題回答正確各得分,回答不正確得分,第三個(gè)問(wèn)題回答正確得分,回答不正確得分.如果一個(gè)挑戰(zhàn)者回答前兩個(gè)問(wèn)題正確的概率都是,回答第三個(gè)問(wèn)題正確的概率為,且各題回答正確與否相互之間沒(méi)有影響.若這位挑戰(zhàn)者回答這三個(gè)問(wèn)題總分不低于分就算闖關(guān)成功.
(Ⅰ)求至少回答對(duì)一個(gè)問(wèn)題的概率;
(Ⅱ)求這位挑戰(zhàn)者回答這三個(gè)問(wèn)題的總得分X的分布列;
(Ⅲ)求這位挑戰(zhàn)者闖關(guān)成功的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng),時(shí),證明:;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過(guò)程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無(wú)限精細(xì)的結(jié)構(gòu)。也就是說(shuō),在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】偶函數(shù)定義域?yàn)?/span>,其導(dǎo)函數(shù)是,當(dāng)時(shí),有,則關(guān)于的不等式的解集為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的周期為3的奇函數(shù),且當(dāng)時(shí),,則方程在區(qū)間上的解得個(gè)數(shù)是( )
A. B. 6 C. 7 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)三棱錐的三視圖如圖所示,其中俯視圖是頂角為的等腰三角形,側(cè)視圖為直
角三角形,則該三棱錐的表面積為____,該三棱錐的外接球體積為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法:
①若某商品的銷售量(件)關(guān)于銷售價(jià)格(元/件)的線性回歸方程為,當(dāng)銷售價(jià)格為10元時(shí),銷售量一定為300件;
②線性回歸直線一定過(guò)樣本點(diǎn)中心;
③若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1;
④在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說(shuō)明選用的模型比較合適,與帶狀區(qū)域的寬度無(wú)關(guān);
⑤在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量變化的貢獻(xiàn)率,越接近于1,表示回歸的效果越好;
其中正確的結(jié)論有幾個(gè)( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com