【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD .
【答案】
(1)
解:當 時, ,因此 ,從而 ,
(2)
證明:
(3)
解:設(shè) , ,則 , , , ,因此原題就等價于證明 .
由條件 可知 .
① 若 ,則 ,所以 .
② 若 ,由 可知 ,設(shè) 中最大元素為 , 中最大元素為 ,
若 ,則由第⑵小題, ,矛盾.
因為 ,所以 ,所以 ,
,即 .
綜上所述, ,因此SC+SC∩D≥2SD.
【解析】(1)根據(jù)題意,由ST的定義,分析可得ST=a2+a4=a2+9a2=30,計算可得a2=3,進而可得a1的值,由等比數(shù)列通項公式即可得答案;
(2)根據(jù)題意,由ST的定義,分析可得ST≤a1+a2+…ak=1+3+32+…+3k﹣1 , 由等比數(shù)列的前n項和公式計算可得證明;
(3)設(shè)A=C(C∩D),B=D(C∩D),則A∩B=,進而分析可以將原命題轉(zhuǎn)化為證明SC≥2SB , 分2種情況進行討論:①、若B=,②、若B≠,可以證明得到SA≥2SB , 即可得證明
【考點精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:.
科目:高中數(shù)學 來源: 題型:
【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射擊運動員射擊1次,命中10環(huán)、9環(huán)、8環(huán)、7環(huán)(假設(shè)命中的環(huán)數(shù)都為整數(shù))的概率分別為0.20,0.22,0.25,0.28. 計算該運動員在1次射擊中:
(1)至少命中7環(huán)的概率;
(2)命中不足8環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知知矩形中,點是邊上的點, 與相交于點,且,現(xiàn)將沿折起,如圖2,點的位置記為,此時.
(1)求證: 面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為(2-p , -p);
②求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)△ABC中,角A,B,C所對的邊分別為a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中m>0,若存在實數(shù)b,使得關(guān)于x的方程f(x)=b有三個不同的根,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m、n是不同的直線,α、β是不重合的平面,則下列命題正確的是
A. 若α∥β,mα,nβ,則m∥n
B. 若mα,nα,m∥β,n∥β,則α∥β
C. 若aα,bβ,a∥b,則α∥β
D. m、n是兩異面直線,若m∥α,m∥β,且n∥α,n∥β,則α∥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com