函數(shù)f(x)=asinx+bcosx+c(a,b,c為常數(shù))的圖象過原點,且對任意x∈R總有f(x)≤f(
π
3
)
成立;
(1)若f(x)的最大值等于1,求f(x)的解析式;
(2)試比較f(
b
a
)
f(
c
a
)
的大小關(guān)系.
(1)由題意,得
f(0)=b+c=0
f(
π
3
)=
3
2
a+
b
2
+c=1
f′(
π
3
)=
a
2
-
3
2
b=0
,
解得a=
3
,b=1,c=-1
,
f(x)=
3
sinx+cosx-1

(2)由(1)可知a=
3
b
、c=-b,
b
a
=
3
3
,
c
a
=-
3
3
,
f(
b
a
)-f(
c
a
)=2asin
3
3
,
f(
b
a
)-f(
c
a
)>0
,即f(
b
a
)>f(
c
a
)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f1(x)=
1
2
x2,f2(x)=alnx(其中a>0).
(Ⅰ)求函數(shù)f(x)=f1(x)•f2(x)的極值;
(Ⅱ)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(
1
e
,e)內(nèi)有兩個零點,求正實數(shù)a的取值范圍;
(Ⅲ)求證:當x>0時,1nx+
3
4x2
-
1
ex
>0.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=x3-3ax-a在(0,1)內(nèi)有最小值,則a的取值范圍是( 。
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個極值點.
(1)求a的值;
(2)求x∈[0,2]時,函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某化工企業(yè)生產(chǎn)某種產(chǎn)品,生產(chǎn)每件產(chǎn)品的成本為3元,根據(jù)市場調(diào)查,預計每件產(chǎn)品的出廠價為x元(7≤x≤10)時,一年的產(chǎn)量為(11-x)2萬件;若該企業(yè)所生產(chǎn)的產(chǎn)品能全部銷售,則稱該企業(yè)正常生產(chǎn);但為了保護環(huán)境,用于污染治理的費用與產(chǎn)量成正比,比例系數(shù)為常數(shù)a(1≤a≤3).
(Ⅰ)求該企業(yè)正常生產(chǎn)一年的利潤L(x)與出廠價x的函數(shù)關(guān)系式;
(Ⅱ)當每件產(chǎn)品的出廠價定為多少元時,企業(yè)一年的利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)當0<a<1時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)當x∈[
1
e
,+∞)時f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=
2
3
,y=f(x)有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+ln(x+1).
(1)求函數(shù)g(x)=f(x)-ax2-x的單調(diào)區(qū)間及最大值;
(2)當x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.
(3)求證:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

參考導數(shù)公式:(ln(x+1))=
1
x+1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

由曲線,直線所圍圖形面積S=       .

查看答案和解析>>

同步練習冊答案