如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F(xiàn)是BC的中點.

(Ⅰ)求證:DA⊥平面PAC;

(Ⅱ)試在線段PD上確定一點G,使CG∥平面PAF,并求三棱錐A-CDG的體積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=
1
3
GD,GB⊥GC.GB=GC=2,PG=4
,E是BC的中點.
(1)求證:PC⊥BG;
(2)求異面直線GE與PC所成角的余弦值;
(3)若F是PC上一點,且DF⊥GC,求
CF
CP
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市模擬題 題型:解答題

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ABC=90°,PA⊥平面ABCD,PA=BC=1,AB=,F(xiàn)是BC的中點.
(1)求證:DA⊥平面PAC;
(2)試在線段PD上確定一點G,使CG∥平面PAF,并求三棱錐A-CDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省模擬題 題型:解答題

已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=GD,GB⊥GC,GB=GC=2,PC=4,E是BC的中點.
(Ⅰ)求證:PC⊥BG;
(Ⅱ)求異面直線GE與PC所成角的余弦值;
(Ⅲ)若F是PC上一點,且DF⊥GC,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P—ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=90°,PA=AB=1,AD=3,且∠ADC=arcsin.求:

(1)三棱錐P—ACD的體積;

(2)直線PC與AB所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年浙江省高考數(shù)學(xué)沖刺試卷A(理科)(解析版) 題型:解答題

已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且,E是BC的中點.
(1)求證:PC⊥BG;
(2)求異面直線GE與PC所成角的余弦值;
(3)若F是PC上一點,且的值.

查看答案和解析>>

同步練習(xí)冊答案