18.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x\;({x≥0})}\\{{x^2}\;({x<0})}\end{array}}\right.$,則f (f(-3)) 的值是9.

分析 由已知得f(-3)=(-3)2=9,從而f (f(-3))=f(9),由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{{\begin{array}{l}{x\;({x≥0})}\\{{x^2}\;({x<0})}\end{array}}\right.$,
∴f(-3)=(-3)2=9,
f (f(-3))=f(9)=9.
故答案為:9.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.對(duì)于定義域?yàn)镮的函數(shù)y=f(x),如果存在區(qū)間[m,n]⊆I,同時(shí)滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n],f(x)值域也是[m,n],則稱[m,n]是函數(shù)y=f(x)的“好區(qū)間”.
(1)設(shè)g(x)=loga(ax-2a)+loga(ax-3a)(其中a>0且a≠1),求g(x)的定義域并判斷其單調(diào)性;
(2)試判斷(1)中的g(x)是否存在“好區(qū)間”,并說(shuō)明理由;
(3)已知函數(shù)P(x)=$\frac{({t}^{2}+t)x-1}{{t}^{2}x}$(t∈R,t≠0)有“好區(qū)間”[m,n],當(dāng)t變化時(shí),求n-m 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若關(guān)于x的不等式$\frac{a(x-2)}{x+3}$<2的解集是(-∞,-3)∪(-2,+∞),則實(shí)數(shù)a的值是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式x2(x+2)(x-1)<0的解為(-2,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面內(nèi),定點(diǎn)A,B,C,D滿足|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|,|$\overrightarrow{DA}$|•|$\overrightarrow{DB}$|=|$\overrightarrow{DB}$|•|$\overrightarrow{DC}$|=|$\overrightarrow{DC}$|•|$\overrightarrow{DA}$|=-4,動(dòng)點(diǎn)P,M滿足|$\overrightarrow{AP}$|=2,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|的最大值是3$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四邊形ABCD是正方形,PD∥MA,MA⊥AD,PM⊥平面 CDM,MA=$\frac{1}{2}$PD=1
(1)求證:平面ABCD⊥平面AMPD
(2)若BC與PM所成角為45°,求二面角M-BP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在區(qū)間[0,1]上隨機(jī)取一個(gè)數(shù)x,則滿足不等式“3x-1>0”的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦點(diǎn)分別是F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上一動(dòng)點(diǎn),△F1PF2內(nèi)切圓面積的最大值是$\frac{π}{3}$.
(1)求橢圓C的方程;
(2)A是橢圓C的左頂點(diǎn),斜率為k(k>0)的直線交C于A.M兩點(diǎn),點(diǎn)N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1>0,a2+a9>0,a5a6<0,則滿足Sn>0的最大自然數(shù)n的值為( 。
A.5B.6C.10D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案