二次函數(shù)f(x)的二次項(xiàng)系數(shù)為正數(shù),且對(duì)任意xÎR都有f(x)=f(4-x)成立,

若f(2-a2)<f(1+a-a2),那么a的取值范圍是                       (     )

A.1<a<2            B.a(chǎn)>1              C.a(chǎn)>2              D.a(chǎn)<1

 

【答案】

D

【解析】

試題分析:∵f(x)=f(4-x),∴二次函數(shù)f(x)的對(duì)稱軸為x=2,又該二次函數(shù)開口向上,故函數(shù)f(x)在(-∞,2)上是減函數(shù),又2-a2<2, 1+a-a2<2,∴2-a2>1+a-a2,∴a<1,故選D

考點(diǎn):本題考查了二次函數(shù)的性質(zhì)的運(yùn)用

點(diǎn)評(píng):對(duì)于此類問題往往先利用二次函數(shù)的對(duì)稱性得到函數(shù)的單調(diào)性,然后再利用單調(diào)性化簡(jiǎn)函數(shù),從而得到不等式的解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(t)=at2-
b
t+
1
4a
(t∈R)有最大值,且最大值為正實(shí)數(shù),集合A={x|
x-a
x
<0},集合B={x|x2<b2}
(1)求集合A和B;
(2)定義:“A-B={x∈A,且x∉B}”設(shè)a,b,x均為整數(shù),且x∈A.記P(E)為x取自集合A-B的概率,P(F)x取集合A∩B的概率.已知P(E)=
2
3
,P(F)=
1
3
.記滿足上述條件的所有a的值從小到大排列構(gòu)成的數(shù)列為{an},所有b的值從小到大排列構(gòu)成數(shù)列{bn}.
①求a1,a2,a3和b1,b2,b3;
②請(qǐng)寫出數(shù)列{an}和{bn}的通項(xiàng)公式(不必證明);
③如果在函數(shù)中f(t)中,a=an,b=bn,記f(t)的最大值為g(n),cn=
1-12g(n)
4g(n)
,Sn=c1c2+c2c3+…+cncn+1,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時(shí),f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c滿足f(1)=0.
(I)若a>b>c,證明f(x)的圖象與x軸有兩個(gè)交點(diǎn),且這兩個(gè)交點(diǎn)間的距離d滿足:
3
2
<d<3;
(Ⅱ)設(shè)f(x)在x=
t+1
2
(t>0,t≠1)處取得最小值,且對(duì)任意實(shí)數(shù)x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若數(shù)列{cn}的前n項(xiàng)和為bn,求{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)<-2x的解集為(1,3).(1)若方程f(x)+6a=0有兩個(gè)相等的根,求f(x)的解析式;(2)若f(x)的最小值為負(fù)數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時(shí),f(x-4)=f(2-x),且x≤f(x)≤
1
2
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

同步練習(xí)冊(cè)答案