滿足{-1,0,1}⊆M⊆{-1,0,1,2,3,4}的集合M的個(gè)數(shù)是


  1. A.
    4個(gè)
  2. B.
    6個(gè)
  3. C.
    7個(gè)
  4. D.
    8個(gè)
D
分析:集合中至少有-1、0、1這三個(gè)元素,其余2、3、4三個(gè)元素可以不選,可以選一個(gè),可以選兩個(gè),也可以都選,本題相當(dāng)于求集合{2,3,4}的子集個(gè)數(shù).
解答:集合中必須有-1、0、1三個(gè)元素,還要在2、3、4中任選個(gè)數(shù)為0、1、2、3個(gè)組合,
即集合{2,3,4}的子集個(gè)數(shù)、有23個(gè)
故選D

點(diǎn)評(píng):含有n個(gè)元素的子集的個(gè)數(shù)是2n個(gè),注意題目的問法,是求子集,還是求真子集,還是非空真子集.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足f(0)=1,且對(duì)任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若數(shù)列{an}滿足:an+1=3f(an)-1(n∈N+),且a1=1,求數(shù)列{an}的通項(xiàng);
(Ⅲ)求證:
3
2
≤(1+
1
2f(n-1)
f(n-1)<2,(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-1)2=5,直線L:mx-y+1-m=0
(1)求證:對(duì)m∈R,直線L與圓C總有兩個(gè)交點(diǎn);
(2)設(shè)直線L與圓C交于點(diǎn)A、B,若|AB|=
17
,求直線L的傾斜角;
(3)設(shè)直線L與圓C交于A、B,若定點(diǎn)P(1,1)滿足2
AP
=
PB
,求此時(shí)直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x的方程x2+x+4-m=0的兩個(gè)根α,β滿足α+1<0<β+1,則m范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,0),B(-1,0).動(dòng)點(diǎn)M滿足|MA|-|MB|=2,則點(diǎn)M的軌跡方程是( 。
A、y=0(-1≤x≤1)B、y=0(x≥1)C、y=0(x≤-1)D、y=0(|x|≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測卷數(shù)學(xué)科(一)新課標(biāo) 題型:044

已知函數(shù)y=f(x)滿足:

(1)分別寫出x∈[0,1)時(shí)y=f(x)的解析式f1(x)和x∈[1,2)時(shí)y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z時(shí)y=f(x)的解析式fn+1(x)(用x和n表示)(不必證明)

(2)當(dāng)(n≥-1,n∈Z)時(shí),y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的圖象上有點(diǎn)列An+1(x,f(x))和點(diǎn)列Bn+1(n+1,f(n+1)),線段An+1Bn+2與線段Bn+1+An+2的交點(diǎn)Cn+1,求點(diǎn)Cn+1的坐標(biāo)(an+1(x),bn+1(x));

(3)在前面(1)(2)的基礎(chǔ)上,請(qǐng)你提出一個(gè)點(diǎn)列Cn+1(an+1(x),bn+1(x))的問題,并進(jìn)行研究,并寫下你研究的過程

查看答案和解析>>

同步練習(xí)冊(cè)答案