點(diǎn)在雙曲線上,、是雙曲線的兩個(gè)焦點(diǎn),,且的三條邊長(zhǎng)成等差數(shù)列,則此雙曲線的離心率是( )
A.2 B.3 C.4 D.5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:013
設(shè)o為坐標(biāo)原點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線(a>0,b>0)的焦點(diǎn),若在雙曲
線上存在點(diǎn)P,滿(mǎn)足∠F1PF2=60°,∣OP∣=,則該雙曲線的漸近線方程為
A.x±y=0
B.x±y=0
C.x±=0
D.±y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,右準(zhǔn)線為一條漸近線的方程是過(guò)雙曲線C的右焦點(diǎn)F2的一條弦交雙曲線右支于P、Q兩點(diǎn),R是弦PQ的中點(diǎn).
(1)求雙曲線C的方程;
(2)若A、B分別是雙曲C上兩條漸近線上的動(dòng)點(diǎn),且2|AB|=|F1F2|,求線段AB的中點(diǎn)M的跡方程,并說(shuō)明該軌跡是什么曲線。
(3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點(diǎn)R在直線m上的射影S滿(mǎn)足,當(dāng)點(diǎn)P在曲線C上運(yùn)動(dòng)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A (0,)為圓心,1為半徑的圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于y = x對(duì)稱(chēng).
(1)求雙曲線C的方程;
(2)若Q是雙曲線線C上的任一點(diǎn),F1,F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程;
(3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點(diǎn),另一直線l經(jīng)過(guò)M (–2,0)及AB的中點(diǎn),求直線l在y軸上的截距b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆陜西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)為坐標(biāo)原點(diǎn),,是雙曲線(a>0,b>0)的焦點(diǎn),若在雙曲
線上存在點(diǎn)P,滿(mǎn)足∠P=60°,∣OP∣=,則該雙曲線的漸近線方程為( )
A.x±y=0 B.x±y=0
C. x±=0 D.±y=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com