【題目】在古裝電視劇《知否》中,甲乙兩人進(jìn)行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為,投中“貫耳”的概率為,投中“散射”的概率為,投中“雙耳”的概率為,投中“依竿”的概率為,乙的投擲水平與甲相同,且甲乙投擲相互獨(dú)立.比賽第一場,兩人平局;第二場,甲投了個“貫耳”,乙投了個“雙耳”,則三場比賽結(jié)束時,甲獲勝的概率為( )
A.B.C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線在第一象限的交點(diǎn)為,橢圓的左、右焦點(diǎn)分別為,其中也是拋物線的焦點(diǎn),且.
(1)求橢圓的方程;
(2)過的直線(不與軸重合)交橢圓于兩點(diǎn),點(diǎn)為橢圓的左頂點(diǎn),直線分別交直線于點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若函數(shù)在處的切線方程為,求, 的值;
(Ⅱ)若, 求函數(shù)的零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,若關(guān)于的方程存在兩個正實(shí)數(shù)根,證明:且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“沉魚、落雁、閉月、羞花”是由精彩故事組成的歷史典故.“沉魚”,講的是西施浣紗的故事;“落雁”,指的就是昭君出塞的故事;“閉月”,是述說貂蟬拜月的故事;“羞花”,談的是楊貴妃醉酒觀花時的故事.她們分別是中國古代的四大美女.某藝術(shù)團(tuán)要以四大美女為主題排演一部舞蹈劇,已知乙扮演楊貴妃,甲、丙、丁三人抽簽決定扮演的對象,則甲不扮演貂蟬且丙扮演昭君的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時,求在內(nèi)的極值;
(2)設(shè)函數(shù),當(dāng)有兩個極值點(diǎn)時,總有,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓過定點(diǎn),且在軸上截得的弦長,設(shè)動圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn)作直線交曲線于兩點(diǎn),問在曲線上是否存在一點(diǎn),使得點(diǎn)在以為直徑的圓上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com