.函數(shù)在定義域內(nèi)的零點的個數(shù)為(    )

A.0                B.1            C.2                D.3

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設數(shù)列{an}的前n項和Sn=f(n).
(1)求函數(shù)f(x)的表達式;
(2)求數(shù)列{an}的通項公式;
(3)在各項均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個數(shù)列{cn}一對變號項.令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號項的對數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•昌平區(qū)二模)已知函數(shù)f(x)=x2-ax+a(x∈R),在定義域內(nèi)有且只有一個零點,存在0<x1<x2,使得不等式f(x1)>f(x2)成立.若n∈N*,f(n)是數(shù)列{an}的前n項和.
(I)求數(shù)列{an}的通項公式;
(II)設各項均不為零的數(shù)列{cn}中,所有滿足ck•ck+1<0的正整數(shù)k的個數(shù)稱為這個數(shù)列{cn}的變號數(shù),令cn=1-
4
an
(n為正整數(shù)),求數(shù)列{cn}的變號數(shù);
(Ⅲ)設Tn=
1
an+6
(n≥2且n∈N*),使不等式
7
m
30
≤(1+T2)•(1+T3)…(1+Tn)•
1
2n+3
恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:①不等式f(x)≤0的解集有且只有一個元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
設數(shù)列{an}的前n項和Sn=f(n).
(1)求數(shù)列{an}的通項公式;
(2)若bn=n-k(n∈N*,k∈R)滿足:對任意的正整數(shù)n都有bn<an,求k的取值范圍
(3)設各項均不為零的數(shù)列{cn}中,所有滿足ci•ci+1<0的正整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的變號數(shù).令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的不恒為零的函數(shù),且對定義域內(nèi)的任意x,y,f(x)都滿足f(xy)=yf(x)+xf(y).
(I)求f(1),f(-1)的值;
(Ⅱ)判斷f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax+a(a∈R)同時滿足:①不等式f(x)≤0 的解集有且只有一個元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設數(shù)列{an}的前n項和為Sn=f(n).
(1)求數(shù)列{an}的通項公式;
(2)設各項均不為零的數(shù)列{cn}中,所有滿足ci-ci+1<0的正整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的變號數(shù),令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號數(shù).

查看答案和解析>>

同步練習冊答案