【題目】已知函數(shù)f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

【答案】解:(Ⅰ)∵f′x)= +1, ∴f′(1)=﹣2,
∴2a2﹣a﹣3=0,
∵a>0,
∴a=
(Ⅱ)∵f′(x)=
令f′(x)>0,解得:x> ,x<﹣3(舍),
令f′(x)<0,解得:0<x<
∴f(x)在(0, )遞減,在( ,+∞)遞增
【解析】(1)先求出f′x)= +1,得f′(1)=﹣2,從而求出a的值,(2)先求出函數(shù)的導(dǎo)數(shù),解不等式從而求出單調(diào)區(qū)間.
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[ ,π],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,則(
A.f(x)在(0,+∞)上是增函數(shù)
B.f(x)在 上是增函數(shù)
C.當(dāng)x∈(0,1)時,f(x)有最小值
D.f(x)在定義域內(nèi)無極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域為[2,+∞);
③設(shè)g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無零點;
④函數(shù) 既是奇函數(shù)又是減函數(shù).
其中正確的命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中a為非零實數(shù)),且方程 有且僅有一個實數(shù)根. (Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣3mx+n(m>0)的兩個零點分別為1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范圍.
(3)令 ,若函數(shù)F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零點,求實數(shù)r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=﹣ x2+bln(x+2)在區(qū)間[﹣1,2]不單調(diào),則b的取值范圍是(
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 為定義在R上的奇函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;
(2)若關(guān)于x的方程f(x)=m在[﹣1,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.點M是棱PC的中點
(1)記平面ADM與平面PBC的交線是l,試判斷直線l與BC的位置關(guān)系,并加以證明.
(2)若 ,求證PB⊥平面ADM,并求直線PC與平面ADM所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案