“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的
 
條件;A是E的
 
條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:常規(guī)題型,簡(jiǎn)易邏輯
分析:由題意,將題意中的條件化為推出的形式,化簡(jiǎn)即可.
解答: 解:∵“若A則B”為真命題,
∴A⇒B,
∵“若B則C”的逆否命題為真命題,
∴B⇒C,
則若B成立,則C成立,
又∵“若D則E”是“若B則C”的充要條件,
∴D⇒E,
又∵“若A則B”是“若C則D”的充分條件,
∴C⇒D,
則B⇒E,
即B是E的充分條件,
即¬B是¬E的必要條件.
∵A⇒B⇒C⇒D⇒E,
∴A⇒E,
∴A是E的充分條件.
故答案為:必要充分.
點(diǎn)評(píng):本題考查了充分、必要條件的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系下,圓 ρ=2cosθ 與圓 ρ=2的公切線條數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意實(shí)數(shù)x,<x>表示不小于x的最小整數(shù),如<1.1>=2,<-1.1>=-1,則“|x-y|<1”是“<x>=<y>”的(  )條件.
A、充分不必要
B、必要不充分
C、充分
D、既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(cosφ+x)5的展開式中x3的系數(shù)為2,則sin(
2
-2φ)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,D、E分別是BC和CC1的中點(diǎn),已知AB=AC=AA1=4,∠BAC=90°.
(1)求證:B1D⊥平面AED;
(2)求二面角B1-AE-D的余弦值;
(3)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
9
-
y2
16
=1上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于9,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù){an}的前n項(xiàng)和為Sn,滿足S5S6+15=0.
(Ⅰ)當(dāng)S5=5時(shí),若bn=|an|,求bn前n項(xiàng)和Tn
(Ⅱ)求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xekx(k≠0)和函數(shù)g(x)=x3+ax-b.
(Ⅰ)曲線y=f(x)在點(diǎn)(0,f(0))處的切線與曲線y=g(x)相切于點(diǎn)(1,g(1)),求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)f(x)在區(qū)間[-1,1]內(nèi)單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題p:曲線
x2
a-2
-
y2
6-a
=1為雙曲線,命題q:函數(shù)f(x)=(4-a)x在R上是增函數(shù),且p∨q為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案