【題目】如圖,公園內(nèi)有一塊邊長為的正三角形空地,擬改建成花園,并在其中建一直道方便花園管理. 設(shè)分別在上,且均分三角形的面積.
(1)設(shè)(),,試將表示為的函數(shù)關(guān)系式;
(2)若是灌溉水管,為節(jié)約成本,希望其最短,的位置應(yīng)在哪里?若是參觀路線,希望其最長,的位置應(yīng)在哪里?
【答案】(1);(2)當(dāng)取且時,最短;當(dāng)與重合且為中點,或與重合且為中點時,最長
【解析】
(1)根據(jù)均分三角形的面積可得,即得,再由余弦定理可得表達式;(2)令,設(shè),用定義討論函數(shù)單調(diào)性,求得的最大值和最小值,再由(1)中得到的關(guān)系式,可得的最大值和最小值.
(1)均分三角形的面積,,,即,
在中,由余弦定理得,
因為,所以 解得,
故關(guān)于的函數(shù)關(guān)系式為.
(2)由(1),令,則,且.設(shè).
若,則,
所以在上是減函數(shù). 同理可得在上是增函數(shù).
于是當(dāng)即時,代入解得:,此時,且,
當(dāng)或即或時,代入解得:,此時為或上的中線.
故當(dāng)取,且時,最短;
當(dāng)與重合且為中點,或與重合且為中點時,最長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.
(1)求證:平面平面;
(2)若為棱的中點,求異面直線與所成角的余弦值;
(3)若二面角大小為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=8,a4=2,且滿足an+2-2an+1+an=0.
(1)求數(shù)列的通項公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中點,
求證:(1)平面ABC;
(2)平面EDB.
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)及對應(yīng)銷售價格y(單位:千元/噸) .
x | 1 | 2 | 3 | 4 | 5 |
y | 70 | 65 | 55 | 38 | 22 |
(1)若y與x有較強的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(2)若該農(nóng)產(chǎn)品每噸的成本為13.1千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,利用上問所求的回歸方程,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤Z最大?
(參考公式:回歸直線方程為,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖的水產(chǎn)品在臨近收獲時,工人隨機從水中捕撈只,其質(zhì)量分別在
(單位:克),經(jīng)統(tǒng)計分布直方圖如圖所示.
(1)求這組數(shù)據(jù)的眾數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為的水產(chǎn)品種隨機抽取只,在從這只中隨機抽取只,求這只水產(chǎn)品恰有只在內(nèi)的概率;
(3)某經(jīng)銷商來收購水產(chǎn)品時,該養(yǎng)殖場現(xiàn)還有水產(chǎn)品共計約只要出售,經(jīng)銷商提出如下兩種方案:
方案A:所有水產(chǎn)品以元/只收購;
方案B:對于質(zhì)量低于克的水產(chǎn)品以元/只收購,不低于克的以元/只收購,
通過計算確定養(yǎng)殖場選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中,,,點在線段上.
(Ⅰ) 若,求的長;
(Ⅱ)若點在線段上,且,問:當(dāng)取何值時,的面積最?并求出面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地規(guī)劃進貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機抽取了8組數(shù)據(jù)作為研究對象,如右下表所示((噸)為買進蔬菜的質(zhì)量,(天)為銷售天數(shù)):
(Ⅰ) 根據(jù)右表提供的數(shù)據(jù)在網(wǎng)格中繪制散點圖,并判斷與是否線性相關(guān),若線性相關(guān),用最小二乘法求出關(guān)于的線性回歸方程
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅱ)根據(jù)(Ⅰ)中的計算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進蔬菜25噸,則預(yù)計需要銷售多少天.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點.
(I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;
(II)設(shè)定點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com