【題目】下面幾種推理過程是演繹推理的是( 。

A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50

B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)

C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分

D. 在數(shù)列中,,可得,由此歸納出的通項公式

【答案】C

【解析】

推理分為合情推理(特殊→特殊或特殊→一般)與演繹推理(一般→特殊),其中合情推理包含類比推理與歸納推理,利用各概念進行判斷可得正確答案.

解:∵A中是從特殊→一般的推理,均屬于歸納推理,是合情推理;

B中,由平面三角形的性質(zhì),推測空間四面體的性質(zhì),是由特殊→特殊的推理,為類比推理,屬于合情推理;

C為三段論,是從一般→特殊的推理,是演繹推理;

D為不完全歸納推理,屬于合情推理.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績,對森林資源野蠻開發(fā)受到嚴肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:

(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;

(2)據(jù)莖葉圖,運用統(tǒng)計學知識分析比較甲、乙兩種樹苗高度整齊情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是各項均為正數(shù)的等比數(shù)列,.

1)求的通項公式;

2)設(shè),求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.

(1)估計這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);

(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;

(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:

方案①:所有芒果以9元/千克收購;

方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.

通過計算確定種植園選擇哪種方案獲利更多.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的標準方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓, 兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三(2)班甲、乙兩名同學自高中以來每次考試成績的莖葉圖如圖,下列說法正確的是(

A.乙同學比甲同學發(fā)揮的穩(wěn)定,且平均成績也比甲同學高

B.乙同學比甲同學發(fā)揮的穩(wěn)定,但平均成績不如甲同學高

C.甲同學比乙同學發(fā)揮的穩(wěn)定,且平均成績也比乙同學高

D.甲同學比乙同學發(fā)揮的穩(wěn)定,但平均成績不如乙同學高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知時都取得極值.

)求的值;

)若,求的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知焦點在x軸上的橢圓C1的長軸長為8,短半軸為2,拋物線C2的頂點在原點且焦點為橢圓C1的右焦點.

(1)求拋物線C2的標準方程;

(2)過(1,0)的兩條相互垂直的直線與拋物線C2有四個交點,求這四個點圍成四邊形的面積的最小值.

查看答案和解析>>

同步練習冊答案