(2007•威海一模)如圖所示,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,D為AC的中點.
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)若AC1⊥平面A1BD,求證B1C1⊥平面ABB1A1;
(Ⅲ)在(II)的條件下,設(shè)AB=1,求三棱B-A1C1D的體積.
分析:(I)連結(jié)AB1交A1B于E,連ED.由正方形的性質(zhì)及三角形中位線定理,結(jié)合線面平行的判定定理可得B1C∥平面A1BD;
(Ⅱ)由AC1⊥平面ABD,結(jié)合正方形的性質(zhì)可證得A1B⊥平面AB1C1,進(jìn)而A1B⊥B1C1,再由線面垂直的判定定理可得B1C1⊥平面ABB1A1
(III)由等腰三角形三線合一可得BD⊥AC.再由面面垂直的性質(zhì)定理得到BD⊥平面DC1A1.即BD就是三棱錐B-A1C1D的高.代入棱錐的體積公式,可得答案.
解答:證明:(I)連結(jié)AB1交A1B于E,連ED.
∵ABC-A1B1C1是三棱柱中,且AB=BB1,
∴側(cè)面ABB1A是一正方形.
∴E是AB1的中點,又已知D為AC的中點.
∴在△AB1C中,ED是中位線.
∴B1C∥ED.
又∵B1C?平面A1BD,ED?平面A1BD
∴B1C∥平面A1BD.…(4分)
(II)∵AC1⊥平面ABD,A1B?平面ABD,
∴AC1⊥A1B,
又∵側(cè)面ABB1A是一正方形,
∴A1B⊥AB1
又∵AC1∩AB1=A,AC1,AB1?平面AB1C1
∴A1B⊥平面AB1C1
又∵B1C1?平面AB1C1
∴A1B⊥B1C1
又∵ABC-A1B1C1是直三棱柱,
∴BB1⊥B1C1
又∵A1B∩BB1=B,A1B,BB1?平面ABB1A1
∴B1C1⊥平面ABB1A1.…(8分)
解:(III)∵AB=BC,D為AC的中點,
∴BD⊥AC.
∴BD⊥平面DC1A1
∴BD就是三棱錐B-A1C1D的高.
由(II)知B1C1⊥平面ABB1A1,∴BC⊥平面ABB1A1
∴BC⊥AB.∴△ABC是直角等腰三角形.
又∵AB=BC=1
∴BD=
2
2

∴AC=A1C1=
2

∴三棱錐B-A1C1D的體積
V=
1
3
•BD•S△A1C1D=
1
3
2
2
1
2
•A1C1•AA1=K=
1
6
…(12分)
點評:本題考查的知識點是直線與平面垂直的判定,直線與平面平行的判定,棱錐的體積,熟練掌握空間線面平行,線面垂直的判定定理是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•威海一模)已知函數(shù)f(x)=
12
[tln(x+2)-ln(x-2)],且f(x)≥f(4)恒成立.
(1)求t的值;
(2)求x為何值時,f(x)在[3,7]上取得最大值;
(3)設(shè)F(x)=aln(x-1)-f(x),若F(x)是單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•威海一模)拋物線y=
14
x2
的焦點坐標(biāo)是
(0,1)
(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•威海一模)不等式
1
x-1
<x+1
的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•威海一模)復(fù)數(shù)
(2-i)2
i
(i是虛數(shù)單位)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•威海一模)老師在班級50名學(xué)生中,依次抽取學(xué)號為5,10,15,20,25,30,35,40,45,50的學(xué)和進(jìn)行作業(yè)檢查,這種抽樣方法是( 。

查看答案和解析>>

同步練習(xí)冊答案