已知矩陣M=
2
0
0
2
,記繞原點逆時針旋轉(zhuǎn)
π
4
的變換所對應(yīng)的矩陣為N.
(Ⅰ)求矩陣N;    
(Ⅱ)若曲線C:xy=1在矩陣MN對應(yīng)變換作用下得到曲線C′,求曲線C′的方程.
考點:幾種特殊的矩陣變換
專題:選作題,立體幾何
分析:(Ⅰ)利用矩陣變換公式,即可求矩陣N;    
(Ⅱ)求出MN,可得坐標之間的關(guān)系,代人方程xy=1整理,即可求曲線C′的方程.
解答: 解:(Ⅰ)由已知得,矩陣N=
2
2
-
2
2
2
2
2
2
.…(3分)
(Ⅱ)矩陣MN=
1-1
11
,它所對應(yīng)的變換為
x′=x-y
y′=x+y
解得
x=
x′+y′
2
y=
y′-x′
2

把它代人方程xy=1整理,得(y′)2-(x′)2=4,
即經(jīng)過矩陣MN變換后的曲線C′方程為y2-x2=4…(7分)
點評:本題給出矩陣變換,求曲線C在矩陣M對應(yīng)變換作用下得到的曲線C'方程,著重考查了矩陣與變換的運算、曲線方程的求法等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

直線ax+y+1=0與連接A(2,3),B(-3,2)的線段相交,則a的取值范圍是( 。
A、[-1,2]
B、(-∞,-1]∪[2,+∞)
C、[-2,1]
D、(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD.
(Ⅰ)求證:ED⊥BC;
(Ⅱ)記CD=x,當三棱錐F-ABD的體積V(x)取得最大值時,求直線EB與平面DBF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且Sn=(
an
2
2+
an
2

(1)求數(shù)列{an}的通項公式;
(2)若Tn=
a12+1
a12-1
+
a22+1
a22-1
+
a32+1
a32-1
+…+
an2+1
an2-1
,求證:Tn
an
2
+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC.
(1)求證:BE∥平面PDA;
(2)求證:平面PBD⊥平面PBE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F1(-c,0)(c>0)到圓C:(x-2)2+(y-4)2=1上任意一點距離的最大值為6,且過橢圓右焦點F2(c,0)與上頂點的直線與圓O:x2+y2=
1
2
相切.
(1)求橢圓E的方程;
(2)若直線l:y=-x+m與橢圓E交于A,B兩點,當以AB為直徑的圓與y軸相切時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,cos
A+C
2
=
3
3

(Ⅰ)求cosB的值;
(Ⅱ)若a+c=2
6
,b=2
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,an=
n
3n
,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱柱ABC-A1B1C1中,AB1∩A1B=E,AC1∩A1C=M,F(xiàn)為B1C1的中點,其直觀圖和三視圖如圖所示,

(1)求證:EF⊥平面A1BC;
(2)求二面角A-A1B-C的大。

查看答案和解析>>

同步練習冊答案