【題目】(2016·哈爾濱高二檢測)如圖,下列四個幾何體中它們的三視圖(正視圖、俯視圖、側(cè)視圖)有且僅有兩個相同,而另一個不同的兩個幾何體是________.

(1)棱長為2的正方體    (2)底面直徑和高均為2的圓柱

(3)底面直徑和高

均為2的圓錐

【答案】(2)(3)

【解析】因為正方體是對稱的幾何體,所以四邊形BFD1E在該正方體的面上的射影可分為:上下、左右、前后三個方向的射影,也就是在面ABCD,面ABB1A1,面ADD1A1上的射影,四邊形BFD1E在面ABCD和面ABB1A1上的射影相同,如圖②所示;四邊形BFD1E在該正方體對角面的ABC1D1內(nèi),它在面ADD1A1上的射影顯然是一條線段,如圖③所示.故②③正確.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出09之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示沒有命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為(  )

A. 0.35 B. 0.25

C. 0,20 D. 0.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2015高考天津,文20】已知函數(shù)

I)求的單調(diào)區(qū)間;

II)設(shè)曲線軸正半軸的交點為P,曲線在點P處的切線方程為,求證:對于任意的正實數(shù),都有;

III)若方程有兩個正實數(shù)根,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司試銷某種“上海世博會”紀念品,每件按30元銷售,可獲利50%,設(shè)每件紀念品的成本為a元.

(1)試求a的值;

(2)公司在試銷過程中進行了市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價x(元)之間的函數(shù)解析式;當每件售價為多少時,每天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;

(Ⅱ)若函數(shù)上無零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2014福建,文22】已知函數(shù)為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當時,

(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017屆云南省云南師范大學附屬中學高三高考適應(yīng)性月考(五)文數(shù)】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)

已知動點M到點的距離等于M到的距離的.

(1)求動點M的軌跡C的方程

(2)若直線軌跡C沒有交點,求的取值范圍;

(3)已知圓軌跡C相交于兩點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分12分甲、乙兩位學生參加數(shù)學競賽培訓(xùn)現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數(shù)據(jù);

2現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度在平均數(shù)、方差或標準差中選兩個分析,你認為選派哪位學生參加合適?請說明理由

參考公式:

查看答案和解析>>

同步練習冊答案