(本小題滿分12分)
某企業(yè)科研課題組計劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測,能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對課題組進行獎勵,獎勵方案為:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金也不超過投資收益的20%,并用函數(shù)y= f(x)模擬這一獎勵方案.
(Ⅰ)試寫出模擬函數(shù)y= f(x)所滿足的條件;
(Ⅱ)試分析函數(shù)模型y= 4lgx-3是否符合獎勵方案的要求?并說明你的理由.
解:(Ⅰ)由題意,模擬函數(shù)y=f(x)滿足的條件是:
f(x)在[10,1000]上是增函數(shù);(2)f(x)≤9;(3)f(x)≤x. …………(3分)
(Ⅱ)對于y=4 lg x-3,顯然它在[10,1000]上是增函數(shù),滿足條件(1),…………………(4分)
又當(dāng)10≤x≤1000時,4lg10-3≤y≤4lg1000-3,即y[1,9],從而滿足條件(2). ……(5分)
下面證明:f(x)≤x,即4lg x-3≤x對于x[10,1000]恒成立. ……………………(6分)
令g(x)= 4lgx-3-x(10≤x≤1000),則g′(x)= ………………(8分)
∵e<
∴20lge-x<0,∴g′(x) <0對于x [10,1000]恒成立.
∴g(x)在[10,1000]上是減函數(shù)…………………………………………………………(10分)
∴g(x)在[10,1000]時,g (x)≤g(10=4lg10-3-×10=-1<0,
即4lg x-3-x≤0,即4lg x-3≤x對于x [10,1000]恒成立.從而滿足條件(3).
故函數(shù)模型y=4lgx-3符合獎勵方案的要求. …………………………………………………(12分)
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com