求以橢圓的焦點為焦點,且過點的雙曲線的標準方程.

試題分析:首先設出雙曲線的標準方程,然后利用與橢圓的關系、雙曲線過點建立組可求得a,b的值.
試題解析:由橢圓的標準方程可知,橢圓的焦點在軸上.
設雙曲線的標準方程為
根據(jù)題意, 解得(不合題意舍去),
∴雙曲線的標準方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的離心率為,左、右焦點分別為,點G在橢圓C上,且,的面積為3.
(1)求橢圓C的方程:
(2)設橢圓的左、右頂點為A,B,過的直線與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左右焦點為,若存在動點,滿足,且的面積等于,則橢圓離心率的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知P為橢圓上一點,F(xiàn)1、F2為橢圓的左、右焦點,B為橢圓右頂點,若平分線與的平分線交于點,則       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓上的一點,,分別為橢圓的上、下頂點,若△的面積為6,則滿足條件的點的個數(shù)為(   )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的準線過橢圓的左焦點且與橢圓交于A、B兩點,O為坐標原點,的面積為,則橢圓的離心率為(     )
A.        B.        C.       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓上的一點到橢圓一個焦點的距離為,則到另一焦點距離為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,以O為圓心,短半軸長為半徑作圓O,過橢圓的長軸的一端點P作圓O的兩條切線,切點為A、B,若四邊形PAOB為正方形,則橢圓的離心率為(  )

A.                  B.                C.            D.

查看答案和解析>>

同步練習冊答案