一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:由三視圖可知該幾何體為長方體內(nèi)挖去一個圓柱,圓柱的底面直徑為2,高為1,體積為π×12×1=π.長方體的長、寬、高分別為4,3,1,體積為4×3×1=12.即可求出幾何體的體積.
解答: 解:由三視圖可知該幾何體為長方體內(nèi)挖去一個圓柱,圓柱的底面直徑為2,高為1,體積為π×12×1=π.
長方體的長、寬、高分別為4,3,1,體積為4×3×1=12.
故所求體積等于12-π
故答案為:12-π.
點評:本題考查三視圖求幾何體的體積,考查計算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一批產(chǎn)品中,4件次品,6件正品,每次取一件檢測,直至4件次品全部找到為止,抽后不放回,求下列事件概率:
(1)事件A:在第五次檢測后停止;
(2)事件B:在第十次檢測后停止.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連擲兩次骰子得到點數(shù)分別為m和n,記向量
a
=(m,n)與向量
b
=(1,-1)的夾角為θ,則θ∈(0,
π
2
)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各函數(shù)中,最小值為2的是( 。
A、y=x+
1
x
B、y=sinx+
1
sinx
,x∈(0,
π
2
C、y=
x2+3
x2+2
D、y=x+
4
x-1
-3,(x>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(1,-2),則
a
b
的夾角大小為(  )
A、0°B、45°
C、90°D、180°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=8,∠B=60°,∠C=75°,則b等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

保持正弦曲線y=sinx上所有點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
,再將圖象沿x軸向右平移
π
6
個單位,得到函數(shù)f(x)的圖象.
(1)寫出f(x)的表達(dá)式,并計算f(
π
2
)
;
(2)求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=x+b,曲線c:y=
1-x2
,它們有兩個公共點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題p:x2-2x+1>0,命題q:x2-4x+3≤0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案