計(jì)算:7lg2(
1
2
)lg
7
10
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得7lg2(
1
2
)lg
7
10
=10lg(7lg22lg
10
7
)
,由此利用對(duì)數(shù)的運(yùn)算法則能求出結(jié)果.
解答: 解:7lg2(
1
2
)lg
7
10

=10lg(7lg22lg
10
7
)

=10lg7lg2+lg2lg
10
7

=10lg2lg7 +lg2lg
10
7

=10lg2
=2.
點(diǎn)評(píng):本題考查指數(shù)式和對(duì)數(shù)式化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)和指數(shù)運(yùn)算性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列的前三項(xiàng)的和為2,前六項(xiàng)的和為6,則其前九項(xiàng)的和為(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)閇a,b]的函數(shù)y=f(x)的圖象的兩個(gè)端點(diǎn)為A、B,M(x,y)是f(x)圖象上任意一點(diǎn),其中x=λa+(1-λ)b(0≤λ≤1),向量
ON
OA
+(1-λ)
OB
,其中O為坐標(biāo)原點(diǎn),若不等式|
MN
|≤k恒成立,則稱(chēng)函數(shù)f(x)在[a,b]上“k階線性近似”.若函數(shù)y=x+
1
x
在[1,2]上“k階線性近似”,則實(shí)數(shù)k的取值范圍為(  )
A、[
3
2
-
2
,+∞)
B、[
3
2
+
2
,+∞)
C、[0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高一年段理科有8個(gè)班,在一次數(shù)學(xué)考試中成績(jī)情況分析如下:
班級(jí)12345678
大于145分
人數(shù)
66735337
不大于145分
人數(shù)
3939384240424238
(1)求145分以上成績(jī)y對(duì)班級(jí)序號(hào)x的回歸直線方程.(精確到0.0001)
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為7班與8班的成績(jī)是否優(yōu)秀(大于145分)與班級(jí)有關(guān)系.
友情提示:
8
i=1
xiyi
=171;
i=1
^∑
x
2
i
=204

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x+1)=f(-x),當(dāng)x∈(0,
1
2
]時(shí),f(x)=log
1
2
(1-x),則f(x)在區(qū)間(1,
3
2
)內(nèi)是( 。
A、減函數(shù)且f(x)>0
B、減函數(shù)且f(x)<0
C、增函數(shù)且f(x)>0
D、增函數(shù)且f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn=
2
3
an+
1
3
,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(
3
x
-x)n
的展開(kāi)式中各項(xiàng)系數(shù)之和為M,各項(xiàng)二項(xiàng)式系數(shù)之和為N且M+N=64,則展開(kāi)式中含x2項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將數(shù)字1,1,2,2,3,3填入表格,要求每行的數(shù)字互不相同,每列的數(shù)字也互不相同,則不同的排列方法共有(  )
A、12種B、18種
C、24種D、36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
、
c
均為單位向量,且滿(mǎn)足
a
b
=0,則(
a
+
b
+
c
)•(
a
+
c
)的最大值是( 。
A、2+2
2
B、2+
5
C、3+
2
D、1+2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案