a,bR+,n是正整數(shù),求證:

 

答案:
解析:

證明:,

當(dāng)abR+ 時(shí),abanbn一定同正,或同負(fù),或同時(shí)為零,

結(jié)論得證。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號)”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上不恒為0的函數(shù),且對于任意的a,b∈R有f(ab)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論;
(3)若f(2)=2,求使得
f(2-n)
n
>-
1
8
(n∈N*)
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

abR+,n是正整數(shù),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b∈R+且a≠b,n∈R,則-abn-anb+an+1+bn+1的值(    )

A.恒為正                    B.恒為負(fù)

C.與a、b大小有關(guān)       D.與n是奇數(shù)或偶數(shù)有關(guān)

查看答案和解析>>

同步練習(xí)冊答案