【題目】在四棱錐中,底面是正方形,側(cè)面底面,且,分別為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得二面角的余弦值為,若存在,請(qǐng)求出點(diǎn)的位置;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)存在,為的中點(diǎn).
【解析】
試題分析:(1)根據(jù)題意可連接,與相交于點(diǎn),易證,根據(jù)線面平行的判定定理即可證得平面;(2)取的中點(diǎn),連接,可證得平面,以為原點(diǎn),分別以射線和為軸,軸和軸建立空間直角坐標(biāo)系,不妨設(shè),
,分別求出平面和平面的法向量,根據(jù)二面角的求法得到的方程,求出其值,若滿足,則存在,否則不存在.
試題解析:(1)證明:連接,由正方形性質(zhì)可知,與相交于點(diǎn),
所以,在中,.........................1分
又平面平面.....................3分
所以平面...................4分
(2)取的中點(diǎn),連接,
因?yàn)?/span>,所以,
又因?yàn)閭?cè)面底面,交線為,所以平面,
以為原點(diǎn),分別以射線和為軸,軸和軸建立空間直角坐標(biāo)系,
,不妨設(shè)................ 6分
則有,假設(shè)在上存在點(diǎn),
則.............. 7分
因?yàn)閭?cè)面底面,交線為,且底面是正方形,
所以平面,則,
由得,
所以,即平面的一個(gè)法向量為.............. 8分
設(shè)平面的法向理為,由即,亦即,可取....................9分
所以...................... 10分
解得(舍去)................................11分
所以線段上存在點(diǎn),且為的中點(diǎn),使得二面角的余弦值為.......12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若
(1)求函數(shù)的解析式;
(2)畫出函數(shù)的圖象,并說出函數(shù)的單調(diào)區(qū)間;
(3)若,求相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三年級(jí)有3名男生和1名女生為了報(bào)某所大學(xué),事先進(jìn)行了多方詳細(xì)咨詢,并根據(jù)自己的高考成績情況,最終估計(jì)這3名男生報(bào)此所大學(xué)的概率都是,這1名女生報(bào)此所大學(xué)的概率是.且這4人報(bào)此所大學(xué)互不影響。
(Ⅰ)求上述4名學(xué)生中報(bào)這所大學(xué)的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報(bào)考某所大學(xué)的上述4名學(xué)生中,記為報(bào)這所大學(xué)的男生和女生人數(shù)的和,試求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題實(shí)數(shù)滿足 ;命題實(shí)數(shù)滿足.
(1)當(dāng)時(shí),若“且”為真,求實(shí)數(shù)的取值范圍;
(2)若“非”是“非”的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對(duì)于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識(shí)宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為,求的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域?yàn)?/span> (-∞,+∞), 求實(shí)數(shù)a的范圍;
(2)若f(x)的值域?yàn)?/span> [0, +∞), 求實(shí)數(shù)a的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請(qǐng)?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(I)求f(0)的值和實(shí)數(shù)m的值;
(II)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明;
(III)若且f(b﹣2)+f(2b﹣2)>0,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com